Contextuality and indistinguishability

Paweł Kurzyński

Quantum Contextuality in Quantum Mechanics and Beyond

Prague, 4 June 2017

Work supported by National Science Centre in Poland: NCN Grant No. 2014/14/E/ST2/00585
Contextuality - single system

Goal: lack of explanation within NCHV theories
Contextuality - many systems

Goals: - find possible measurements
 - lack of explanation within NCHV theories
Distinguishability

Bell scenario, …, two independent single-system experiments
Indistinguishability

limited set of measurements

Measurement

001101101110111...

Does not reveal individual properties

Example:

\[A_1 = 0, 1 \quad A_2 = 0, 1 \]

But we can only measure:

\[A_1 + A_2 = 0, 1, 2 \]
Contextuality as lack of conservation

Two particles

- Distinguishable
- Identical

State independent contextually

Fermions vs Bosons

<table>
<thead>
<tr>
<th>N</th>
<th>Fermions</th>
<th>Bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>-</td>
<td>...</td>
</tr>
</tbody>
</table>

Parity argument for bosons - M. Karczewski
Hardy-type contextuality - fermions

\[|\psi\rangle = f_{67}^\dagger f_{69}^\dagger |0\rangle \]

\[|\psi\rangle = \left(\frac{f_{39}^\dagger f_{23}^\dagger}{2\sqrt{2}} + \frac{f_{37}^\dagger f_{23}^\dagger}{4} - \frac{f_{37}^\dagger f_{39}^\dagger}{4} \right. \]

\[- \left. \frac{3f_{34}^\dagger f_{23}^\dagger}{4} + \frac{f_{34}^\dagger f_{39}^\dagger}{4} - \frac{f_{34}^\dagger f_{37}^\dagger}{2\sqrt{2}} \right) |0\rangle \]
Hardy-type contextuality - bosons

\[|\psi\rangle = \frac{b_{16}^\dagger}{\sqrt{2}} |0\rangle \]

\[|\psi\rangle = \left(\frac{b_{45}^\dagger}{4\sqrt{2}} + \frac{b_{48}^\dagger}{4\sqrt{2}} - \frac{b_{47}^\dagger}{2\sqrt{2}} + \frac{b_{45}^\dagger b_{48}^\dagger}{4\sqrt{2}} - \frac{b_{45}^\dagger b_{47}^\dagger}{4} - \frac{b_{47}^\dagger b_{48}^\dagger}{4} \right) |0\rangle \]
Conclusions and open problems

• Indistinguishability restricts the set of measurements
• For more than one particle contextuality can be weaker
• In case of fermions the particle-hole symmetry is important

• Other dimensions and different number of modes
• Can one find examples for which there is no contextuality for $N=1$, but contextuality for $N>1$?
• What is the minimal contextual system for a given N?
• ...