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Contextuality: Other Approaches
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Contextuality-by-Default Theory: Three Forms of
Context-Dependence

1 Contextual labeling (identity). Fundamental and universal.
2 Direct (cross-) influences (inconsistent connectedness). Can be present

or absent.
3 Contextuality proper. Can be present or absent.
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Contextuality-by-Default Theory: Contextual Labeling

1. Random variables are contextually labeled (i.e., their context is part of
their identity).
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This implies that the sets of random variables in different contexts are
disjoint.
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Contextuality-by-Default Theory: Direct Influences

2. The distributions of two connected random variables (measuring the same
content in different contexts) may be different.
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If different, interpretation is: “Direct” influences (cross-influences), signaling,
disturbance, etc.
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Contextuality-by-Default Theory: Contextuality proper

3. Contextuality is present if the joint distributions within contexts are
incompatible with certain joint distributions imposed on the content-sharing
random variables.
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Contextuality-by-Default Theory: Contextuality proper

3. Contextuality is incompatibility of joint distributions of the bunched
random variables with certain joint distributions imposed on the
content-sharing random variables.
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3. Contextuality is incompatibility of joint distributions of the bunched
random variables with certain joint distributions imposed on the connected
random variables.
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3. Contextuality is incompatibility of joint distributions of the bunched
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Contextuality-by-Default Theory: Contextuality proper

3.Contextuality is incompatibility of joint distributions of the bunched random
variables with certain couplings imposed on the connected random variables.
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3.Contextuality is incompatibility of joint distributions of the bunched random
variables with certain couplings imposed on the connected random variables.
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Contextuality-by-Default Theory: Multimaximal Couplings
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to each other with maximal possible probability. This is called a
multi-maximal coupling. (Can be generalized.)
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Necessity of Contextual Labeling: Traditional View is
Contradictory

Noncontextual labeling is not an option, even in the absence of direct
influences:
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Contextuality versus Inconsistent Connectedness

1 (Non)Contextuality may exist with or without direct influences.

2 Direct influences are causal, contextuality is correlational:
1

direct influences are manifested in changes of marginal distributions,

contextuality is revealed on the level of joint distributions;

2
contextuality can relate spacelike-separated measurements;

3
with timelike separation, a future measurement can create an effective

context for a past one.
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2 This is not generally true.
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Example: Cyclic systems of binary random variables
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Example: Cyclic systems of binary random variables
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n > 5 investigated in psychophysics (Ru Zhang, Cervantes)
n = 5— Klyachko-Can-Binicoglu-Shumovsky-type system
n = 4— Einstein-Podolsky-Rosen/Bohm-Bell-type system
n = 3— Suppes-Zanotti-Leggett-Garg-type system
n = 2— question order (Moore-Wang-Busemeyer) type system



Example: Cyclic systems of binary random variables

Theorem
A cyclic system of binary random variables is contextual if and only if
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Ontic-epistemic interplay: the representation is non-unique (in many ways).
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Flow Chart of Contextuality Analysis: Expansion through
Joining
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There are cases (e.g., question-order effect) when it is unwarranted.
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Flow Chart of Contextuality Analysis: Expansion through
Coarsening
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Ontic-epistemic interplay: coarsening is non-unique and selective.
Not all possible coarsenings may be of interest (depends on the internal
structure, e.g., linear ordering or metric, of the space of possible values).
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Flow Chart of Contextuality Analysis: Canonical
Representation
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Each random variable in the expanded system is replaced with its split
representation, a binary random variable isolating one of the values from the
rest (detecting this value).
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Measure of contextuality: Quasi-couplings
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Measure of contextuality

Theorem
Any system R of random variables has a quasi-coupling S such that

(i) any pair

⇣
S

c
q, S

c 0
q

⌘
is properly distributed, and the probability of S

c
q = S

c 0
q has the

maximal possible value;

(ii) the value of total variation VT in S has the smallest possible value among all

quasi-couplings satisfying (i).

The minimum value of VT - 1 can be taken as a universal measure of contextuality
in any system of random variables.

Its value is 0 if and only if the system is not contextual.
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Dummy measurements
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Theorem
Contextuality of a system does not change if every context-content pair

associated with no measurement is assigned a deterministic random variable

(“dummy measurement”).
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