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Outline

Outline
We look for group actions and invariant states in (possibly) contextual
probabilistic theories.

These notions are important in formulating symmetries, constrains in the
MaxEnt principle and physical principles in general.

We look for a formal framework based on measure theory: after all,
probabilities can be considered as measures over suitable algebraic
structures.

We explore the possibility of developing a non-commutative version of
geometric probability theory.

Joint work with Cesar Massri (CONICET) and Angel Plastino
(CONICET).
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Classical probability

Probability measures

µ : Σ→ [0, 1] (1)

such that:

1 µ(∅) = 0

2 µ(Ac) = 1− µ(A)

3 For each family of pairwise disjoint sets {Ai}i∈I

µ(
⋃
i∈I

Ai) =
∑

i

µ(Ai)

Classical case
σ : Γ −→ [0; 1], such that

∫
Γ σ(p, q)d3pd3q = 1
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Convex set of quantum states
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Convex set of quantum states

Figure: Geometric representation.
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Quantum probability (Born’s rule)

Probability measures

s : LvN −→ [0; 1] (2)

such that:

1 s(0) = 0 (0 null subspace).

2 s(P⊥) = 1− s(P)

3 for each family of pairwise orthogonal projections (Pj),
s(
∑

j Pj) =
∑

j s(Pj)

Gleason’s theorem

sρ(P) = tr(ρP) (3)

[F. Holik, A. Plastino and M. Sáenz, Annals Of Physics, Volume 340, Issue 1,
293-310, (2014)]
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2 s(P⊥) = 1− s(P)

3 for each family of pairwise orthogonal projections (Pj),
s(
∑

j Pj) =
∑

j s(Pj)

Gleason’s theorem
Gleason’s theorem assures that there exists a density matrix for each probabil-
ity measure as defined above (dim(H) ≥ 3).

[F. Holik, A. Plastino and M. Sáenz, Annals Of Physics, Volume 340, Issue 1,
293-310, (2014)]
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More general theories

In a series of papers Murray and von Neumann searched for algebras
more general than B(H).

The new algebras are known today as von Neumann algebras, and their
elementary components can be classified as Type I, Type II and Type III
factors.

It can be shown that, the projective elements of a factor form an
orthomodular lattice. Classical models can be described as commutative
algebras.

The models of standard quantum mechanics can be described by using
Type I factors (Type In for finite dimensional Hilbert spaces and Type I∞
for infinite dimensional models). These are algebras isomorphic to the
set of bounded operators on a Hilbert space.
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More general theories

Further work revealed that a rigorous approach to the study of quantum
systems with infinite degrees of freedom needed the use of more general
von Neumann algebras, as is the case in the axiomatic formulation of
relativistic quantum mechanics. A similar situation holds in algebraic
quantum statistical mechanics.

In these models, States are described as complex functionals satisfying
certain normalization conditions, and when restricted to the projective
elements of the algebras, define measures over lattices which are not the
same to those of standard quantum mechanics.
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von Neumann algebras

Canonical example of a von Neumann algebra: B(H)

The easiest way to define a von Neumann algebra regards it as a
∗-subalgebraW satisfyingW ′′ =W , where given S ⊆ B(H), S′ is
defined as

S′ = {A ∈ B(H) | AB− BA = 0∀B ∈ S}

The collection of orthogonal projections of a von Neumann algebraW is
an orthomodular lattice P(W).
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States

A state ν :W −→ C is defined as a continuous positive linear functional
such that ν(I) = 1.

Positivity means that ν(A∗A) ≥ 0 for all A ∈ W or, equivalently, that
ν(A) ≥ 0 for all A ≥ 0

Normal states can be defined as those states satisfying the condition
ν(supα(aα)) = supα ν(aα) for any uniformly bounded increasing net aα
of positive elements ofW (equivalently, states satisfying
ν(
∑

i∈I Ei) =
∑

i∈I ν(Ei) for any countable and pairwise orthogonal
family of events {Ei}i∈I ).
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Why orthomular?

Thus, normal states of physical theories define probabilities on orthomodular
lattices satisfying the following properties:
Let L be an orthomodular lattice. Then, define

s : L → [0; 1],

(L standing for the lattice of all events) such that:

s(0) = 0. (4)

s(E⊥) = 1− s(E),

and, for a denumerable and pairwise orthogonal family of events Ej

s(
∑

j

Ej) =
∑

j

s(Ej).

where L is a general orthomodular lattice (with L = Σ and L = P(H) for the
Kolmogorovian and quantum cases respectively).
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Maximal Boolean subalgebras

Maximal Boolean subalgebras
An orthomodular lattice L can be described as a pasting of Boolean
algebras:

L =
∨
B∈B
B

(where B is the set of maximal Boolean algebras of L).

A state s of L defines a classical probability on each classical Boolean
subalgebra B. In other words: sB(. . .) := s|B(. . .) is a Kolmogorovian
measure over B.
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But then...

One can think about much more general theories.

In fact, more general non-Kolmogorovian structures have been found
associated to problems in biology, cognition and computer science.

This has direct implications for information theory: F. Holik, G. M.
Bosyk and G. Bellomo, “Quantum Information as a Non-Kolmogorovian
Generalization of Shannon’s Theory”, Entropy 2015, 17 (11), 7349-7373.

Holik, F., Sergioli, G., Freytes and A. Plastino, “Pattern Recognition in
Non-Kolmogorovian Structures”, Foundations of Science, (2017).
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Axioms of geometric probability theory

Axiom1

µ(∅) = 0

Axiom2

If A and B are measurable sets: µ(A ∪ B) = µ(A) + µ(B)− µ(A ∩ B)
which (for Boolean algebras) is equivalent to:

µ(A ∪ B) = µ(A) + µ(B) (5)

for disjoint A and B.
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Axioms of geometric probability theory

The following axiom reflects the action of a group that leaves the measure
invariant:

Axiom3

The volume of a set A does not depends on the position of A; in other words,
if A can be rigidly transformed in B, then, the volumes (measures) of B and A
are equal.

Axioma

Given a parallelotope P, with orthogonal sides x1, . . . , xn, we impose the
normalization condition: µ(P) = x1x2 · · · xn
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Symmetric polynomials

e1(x1, x2, . . . , xn) = x1 + x2 + . . .+ xn (6a)

e2(x1, x2, . . . , xn) = x1x2 + x1x3 + . . .+ xn−1xn (6b)

en−1(x1, x2, . . . , xn) = x2x3 · · · xn + x1x3x4...xn + . . .+ x1x2 · · · xn−1 (6c)

en(x1, x2, . . . , xn) = x1x2...xn (6d)

Each one of these polynomials gives a different invariant measure.

Federico Holik (Instituto de Fı́sica de La PLata) Geometric probability theory in contextual probabilistic theories
Quantum Contextuality in Quantum Mechanics and BeyondPrague, Czech Republic on June 4-5 - 2017 18

/ 32



Generalization

Consider a function:

s : L → [0; 1], (7)

Axiom1

s(0) = 0

Axiom2

For an orthogonal and denumerable family Ej, we have

s(
∑

j

Ej) =
∑

j

s(Ej)

[F. Holik, C. Massri, and A. Plastino, “Geometric probability theory and
Jaynes’s methodology”, Int. J. Geom. Methods Mod. Phys. 13, 1650025
(2016).]
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Generalization

Axiom3

There exists a group of automorphisms F such that for all g ∈ F amd all
E ∈ L

s(g · E) = s(E)

Axiom4

The normalization condition has the form

ei(s(E1), s(E2), . . .) = 0

where {Ej}J ⊆ L is a subset of events.
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Generalization

Maximization process
These axioms determine a convex set C in a univocal way and axiom 3
determines a varietyM.

The set of states of a concrete physical system can be described as
C ∩M.

We compute the measurement entropy on this set:

HE(s) := −
∑
x∈E

s(x) ln(s(x))

H(s) := inf
E∈L

HE(s)
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Conditions

Consider the conditions:

〈R1〉 = r1

〈R2〉 = r2

...

〈Rn〉 = rn, (8)

We want to determine the least biased probability distribution satisfying these
constrains.
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MaxEnt

MaxEnt tell us that:

ρmax−ent = exp−λ01−λ1R1−···−λnRn , (9)

where the λs are Lagrange multipliers satisfying:

ri = − ∂

∂λi
ln Z, (10)

and

Z(λ1 · · ·λn) = tr[exp−λ1R1−···−λnRn ], (11)

The normalization condition reads:

λ0 = ln Z. (12)

Federico Holik (Instituto de Fı́sica de La PLata) Geometric probability theory in contextual probabilistic theories
Quantum Contextuality in Quantum Mechanics and BeyondPrague, Czech Republic on June 4-5 - 2017 23

/ 32



Geometric description

Given an effect E, let us consider the set of states:

C(E,λ) := {ρ ∈ C | tr(ρE) = λ, λ ∈ [0, 1]}. (13)

It is a convex set nd there exists S (a real subspace in A) such that:

C(E,λ) = S ∩ C, (14)
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In a generalized model

In general, an equation of the form:

〈R〉 = r, (15)

Geometric characterization
...can be expressed as subspace intersected with the convex set of states:
S(R, r) ∩ Ω.
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In generalized models:

Cmax−ent :=
⋂

i

CRi =
∧

i

CRi . (16)

Given a series of conditions represented by convex sets Ci, one should
maximize entropy in Cmax−ent =

∧
i Ci.

[F. Holik and A. Plastino, Journal Of Mathematical Physics 53, 073301
(2012)]
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Functor

Let L be an orthocomplemented lattice. Then, there exists an abelian group
M = M(L) such that the functorM(L;−) satisfies,

M(L;−) = HomZ(M,−)

This means that a measure in L valued in A is equivalent to a Z-linear map
from M(L) to A.
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Measures factorize

Let L be an orthocomplemented lattice and assume that a group G acts by
automorphism. Let A be an abelian group where G acts trivially.

L ∀ν //

π
��

	
A

M(L)

∃!ν

== L ∀ν′ //

πG
��

	
A

M(L)G

∃!ν′

<<

where ν (resp. ν ′) is a measure (resp. invariant measure) and ν, ν ′ are linear
maps. The commutativity means that ν = νπ, ν ′ = ν ′πG.
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Measures

[Non-Boolean Groemer’s integral theorem] Let L be an orthocomplemented
lattice where a group G acts. Let B be an orthogonal generating set for the
action of G. Then, invariant measures on L are in bijection with
NG(B)-invariant functions on B, ν, such that

ν(b1 ∨ b2) = ν(b1) + ν(b2), ∀b1, b2, b1 ∨ b2 ∈ B, b1⊥b2.

[C. Massri, F. Holik and A. Plastino, “States in generalized probabilistic
models: an approach based in algebraic geometry”, arXiv:1705.03045v1
[quant-ph] (2017).]
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Conclusions

Conclusions
We study invariant measures in a general framework that includes many
contextual theories of interest.

We approach the problem from the perspective of measure theory. More
precisely, we present a non-commutative version of geometric
probability theory. Formulating the problem in terms of invariant
measures allows link states and group actions in a natural way.

We give conditions for the solution of the MaxEnt maximization
problem with very general constrains.

Federico Holik (Instituto de Fı́sica de La PLata) Geometric probability theory in contextual probabilistic theories
Quantum Contextuality in Quantum Mechanics and BeyondPrague, Czech Republic on June 4-5 - 2017 30

/ 32



Conclusions

Conclusions
We study invariant measures in a general framework that includes many
contextual theories of interest.

We approach the problem from the perspective of measure theory. More
precisely, we present a non-commutative version of geometric
probability theory. Formulating the problem in terms of invariant
measures allows link states and group actions in a natural way.

We give conditions for the solution of the MaxEnt maximization
problem with very general constrains.

Federico Holik (Instituto de Fı́sica de La PLata) Geometric probability theory in contextual probabilistic theories
Quantum Contextuality in Quantum Mechanics and BeyondPrague, Czech Republic on June 4-5 - 2017 30

/ 32



Conclusions

Conclusions
We study invariant measures in a general framework that includes many
contextual theories of interest.

We approach the problem from the perspective of measure theory. More
precisely, we present a non-commutative version of geometric
probability theory. Formulating the problem in terms of invariant
measures allows link states and group actions in a natural way.

We give conditions for the solution of the MaxEnt maximization
problem with very general constrains.

Federico Holik (Instituto de Fı́sica de La PLata) Geometric probability theory in contextual probabilistic theories
Quantum Contextuality in Quantum Mechanics and BeyondPrague, Czech Republic on June 4-5 - 2017 30

/ 32



Some references

References
F. Holik, Cesar Massri, and A. Plastino, “Geometric probability theory
and Jaynes’s methodology”, Int. J. Geom. Methods Mod. Phys. 13,
1650025 (2016).

C. Massri, F. Holik and A. Plastino, “States in generalized probabilistic
models: an approach based in algebraic geometry”, arXiv:1705.03045v1
[quant-ph] (2017).

C. Massri, F. Holik, “Methods of algebraic geometry applied to the study
of measures over bounded lattices”, arXiv:1705.11051 [math.AC]
(2017).

F. Holik and A. Plastino, Quantal effects and MaxEnt, Journal Of
Mathematical Physics, 53, 073301 (2012); doi: 10.1063/1.4731769

Federico Holik (Instituto de Fı́sica de La PLata) Geometric probability theory in contextual probabilistic theories
Quantum Contextuality in Quantum Mechanics and BeyondPrague, Czech Republic on June 4-5 - 2017 31

/ 32


	Main Part
	States
	On a non-commutative geometric probability theory


