From informationally complete POVMs to the Kochen-Specker theorem

Michel Planat

Université de Bourgogne/Franche-Comté, Institut FEMTO-ST CNRS UMR 6174, 15 B Avenue des Montboucons, F-25044 Besançon, France. michel.planat@femto-st.fr

Quantum Contextuality in Quantum Mechanics and Beyond, Prague, Czech Republic, June 4-5 (2017).

・ロン ・回と ・ヨン ・ヨン

Asymmetric IC-POVMs IC-POVM' and the Kochen-Specker theorem

Goals and methods

It is possible to conciliate informationally complete measurements on an unknown density matrix: IC-POVMs and Kochen-Specker (KS) concepts (which forbid hidden variable theories of a non-contextual type). This was shown for gutrits ¹ and it is continued here for two-qubits (2QB), three-qubits (3QB) and two and three qutrits (2QT & 3QT). Non symmetric IC-POVMs have been found in dimensions 3 to 12 starting from **permutation groups**, the derivation of appropriate non-stabilizer states: magic/fiducial states and the action of the Pauli group on them ². For 2QB, 3QB, 2QT and 3QT systems, a Kochen-Specker theorem follows.

¹I. Bengtsson, K. Blanchfield and A. Cabello, A Kochen-Specker inequality from a SIC, *Phys. Lett.* **A376** 374-376 (2012).

A reminder on SIC-POVMs

- ► A POVM is a collection of positive semi-definite operators $\{E_1, \ldots, E_m\}$ that sum to the identity. In the measurement of a state ρ , the *i*-th outcome is obtained with a probability given by the **Born rule** $p(i) = \text{tr}(\rho E_i)$. For a **minimal IC-POVM**, one needs d^2 one-dimensional projectors $\Pi_i = |\psi_i\rangle \langle \psi_i|$, with $\Pi_i = dE_i$, such that the rank of the Gram matrix with elements $\text{tr}(\Pi_i \Pi_i)$, is precisely d^2 .
- A SIC-POVM further obeys the relation (Renes et al,2004)

$$|\langle \psi_i | \psi_j \rangle|^2 = \operatorname{tr}(\Pi_i \Pi_j) = \frac{d\delta_{ij} + 1}{d+1},$$

This allows the recovery of the density matrix as (Fuchs, 2004)

$$\rho = \sum_{i=1}^{d^2} \left[(d+1)p(i) - \frac{1}{d} \right] \prod_i.$$

This type of quantum tomography is often known as quantum-Bayesian, where the p(i)'s represent agent's Bayesian degrees of belief.

▶ ★週 ▶ ★ ヨ ▶ ★ ヨ ▶ ─ ヨ

One starts from the qubit magic/fiducial state

$$|T\rangle = \cos(\beta) |0\rangle + \exp(\frac{i\pi}{4})\sin(\beta) |1\rangle, \quad \cos(2\beta) = \frac{1}{\sqrt{3}};$$

employed for **universal quantum computation** (Bravyi, 2004). It is defined as the $\omega_3 = \exp(\frac{2i\pi}{3})$ -eigenstate of the *SH* matrix [the product of the Hadamard matrix *H* and the phase gate $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$].

► Taking the action on $|T\rangle$ of the four Pauli gates *I*, *X*, *Z* and *Y*, the corresponding (pure) projectors $\Pi_i = |\psi_i\rangle \langle \psi_i|, i = 1...4$, sum to twice the identity matrix thus building a POVM and the pairwise distinct products satisfy $|\langle \psi_i | \psi_j \rangle|^2 = \frac{1}{3}$. The four elements Π_i form the well known 2-dimensional SIC-POVM.

In contrast, there is no POVM attached to the magic state $|H\rangle = \cos(\frac{\pi}{8})|0\rangle + \sin(\frac{\pi}{8})|1\rangle$.

(ロ) (同) (E) (E) (E)

Later, we construct IC-POVMs using the covariance with respect to the generalized *d*-dimensional Pauli group that is generated by the shift and clock operators as follows

$$egin{aligned} X \ket{j} &= \ket{j+1} \mod d \ Z \ket{j} &= \omega^j \ket{j} \end{aligned}$$

with $\omega = \exp(2i\pi/d)$ a d-th root of unity.

A general Pauli (also called Heisenberg-Weyl) operator is of the form

$$T_{(m,j)} = \begin{cases} i^{jm} Z^m X^j & \text{if } d = 2\\ \omega^{-jm/2} Z^m X^j & \text{if } d \neq 2. \end{cases}$$
(2)

where $(j, m) \in \mathbb{Z}_d \times \mathbb{Z}_d$. For *N* particules, one takes the Kronecker product of qudit elements *N* times.

Stabilizer states are defined as eigenstates of the Pauli group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ○ ○○

Informationally complete POVMs: IC-POVMs

- ▶ Using **permutation groups**, we discover **minimal IC-POVMs** (i.e. whose rank of the Gram matrix is d^2) and with Hermitian angles $|\langle \psi_i | \psi_j \rangle|_{i \neq j} \in A = \{a_1, \ldots, a_l\}$, a discrete set of values of small cardinality *I*. A SIC is equiangular with |A| = 1 and $a_1 = \frac{1}{\sqrt{d+1}}$.
- ► The states encountered below are considered to live in a **cyclotomic field** $\mathbb{F} = \mathbb{Q}[\exp(\frac{2i\pi}{n})]$, with n = GCD(d, r), the greatest common divisor of d and r, for some r. The Hermitian angle is defined as $|\langle \psi_i | \psi_j \rangle|_{i \neq j} = ||(\psi_i, \psi_j)||^{\frac{1}{\deg}}$, where ||.|| means the field norm ³ of the pair (ψ_i, ψ_j) in \mathbb{F} and deg is the degree of the extension \mathbb{F} over the rational field \mathbb{Q} .
- For the IC-POVMs under consideration below, in dimensions d = 3, 4, 5, 6 and 7, one has to choose n = 3, 12, 20, 6 and 21 respectively, in order to be able to compute the action of the Pauli group. Calculations are performed with Magma.

³H. Cohen, A course in computational algebraic number theory (Springer, New York, 1996, p. 162). ←□→←@→←E→←E→ E→ → C→ The single qutrit (Hesse) SIC-POVM from permutations: 1

- ▶ The symmetric group S_3 contains the **permutation matrices** *I*, *X* and X^2 of the Pauli group, where $X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \equiv (2, 3, 1)$ and three **extra permutations** $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \equiv (2, 3)$, $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \equiv (1, 3)$ and $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \equiv (1, 2)$, that do not lie in the Pauli group but are parts of the Clifford group.
- ▶ Taking the **eigensystem of the latter matrices**, it is not difficult check that there exists two types of qutrit magic states of the form $(0, 1, \pm 1) \equiv \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle \pm |2\rangle)$. Then, taking the action of the nine qutrit Pauli matrices, one arrives at the well known **Hesse SIC** (Bengtsson, 2010, Tabia, 2013, Hughston, 2007).

<ロ> (四) (四) (三) (三) (三) (三)

Asymmetric IC-POVMs IC-POVM' and the Kochen-Specker theorem

The single qutrit (Hesse) SIC-POVM from permutations: 2

Magic qutrit POVM's (0,1,1) or (0,1,-1)

(a)

▶ The Hesse configuration resulting from the qutrit POVM. The lines of the configuration correspond to traces of triple products of the corresponding projectors equal to $\frac{1}{8}$ [for the state (0, 1, -1)] and $\pm \frac{1}{8}$ [for the state (0, 1, 1)]. Bold lines are for commuting operator pairs.

dim	magic state	$ \langle \psi_i \psi_j \rangle _{i \neq j}^2$	Geometry
2	$ T\rangle$	1/3	tetrahedron
3	$(0,1,\pm 1)$	1/4	Hesse SIC
4	$(0,1,-\omega_6,\omega_6-1)$	$\{1/3, 1/3^2\}$	Mermin square [*]
5	(0, 1, -1, -1, 1)	$1/4^2$	Petersen graph
	(0, 1, i, -i, -1)		
	(0, 1, 1, 1, 1)	$\{1/3^2, (2/3)^2\}$	
6	$(0,1,\omega_6-1,0,-\omega_6,0)$	$\{1/3, 1/3^2\}$	Borromean rings
7	$(1,-\omega_3-1,-\omega_3,\omega_3,\omega_3+1,-1,0)$	$1/6^2$	unknown
8	$(-1\pm i,1,1,1,1,1,1,1)$	1/9	[63 ₃] Hoggar SIC*
9	(1, 1, 0, 0, 0, 0, -1, 0, -1)	$\{1/4, 1/4^2\}$	[9 ₃] Pappus conf.*
12	$(0,1,\omega_6-1,\omega_6-1,1,1,1,$	8 values	Fig. 6
	$\omega_6-1,-\omega_6,-\omega_6,0,-\omega_6,0)$		

Magic states of IC-POVMs in dimensions 2 to 12. *In dimensions 4, 8 and 9, a proof of the two-qubit, two-qutrit and three-qubit Kochen-Specker theorem follows from the IC-POVM.

3

A two-qubit IC-POVM from permutations and the Mermin square: 1

▶ From now we restrict to a **magic groups** (of gates showing one entry of 1 on their main diagonals). This only happens for a group isomorphic to the alternating group

$$A_4 \cong \left\langle \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\rangle.$$

One finds magic states of type (0, 1, 1, 1) and (0, 1, $-\omega_6, \omega_6 - 1$), with $\omega_6 = \exp(\frac{2i\pi}{6})$.

► Taking the action of the 2**QB** Pauli group on the latter type of state, the corresponding pure projectors sum to 4 times the identity (to form a **POVM**) and are independent, with the pairwise distinct products satisfying the dichotomic relation $\operatorname{tr}(\Pi_i\Pi_j)_{i\neq j} = |\langle \psi_i | \psi_j \rangle|_{i\neq j}^2 \in \{\frac{1}{3}, \frac{1}{3^2}\}$. Thus the 16 projectors Π_i build an asymmetric informationally complete measurement not discovered so far.

(日) (同) (目) (日) (日) (日)

A two-qubit IC-POVM from permutations and the Mermin square: 2

2QB IC-POVM : Mermin square

(b)

▶ The triple products of the four dimensional IC-POVM whose trace equal $\pm \frac{1}{27}$ and simultaneously equal plus or minus the identity matrix \mathcal{I} ($-\mathcal{I}$ for the dotted line). This picture identifies to the well known Mermin square which allows a proof of the Kochen-Specker theorem.

The three-qubit Hoggar SIC : 1

- In dimension d = 8, the Hoggar SIC ⁴ follows from the action of the three-qubit Pauli group on a fiducial state such as (−1 ± i, 1, 1, 1, 1, 1, 1).
- ▶ Triple products are related to combinatorial designs. There are 4032 (resp. 16128) triples of projectors whose products have trace equal to $-\frac{1}{27}$ (resp. $\frac{1}{27}$). Within the 4032 triples, those whose product of projectors equal $\pm I$ are organized into a configuration [63₃] whose incidence graph kas automorphism group $G_2(2) = U_3(3) \rtimes \mathbb{Z}_2$ of order 12096. Two isospectral configurations of this type exist, one is the so-called **generalized hexagon** GH(2, 2) (also called split Cayley hexagon) and the other one is **its dual** (Frohard, 1994). These configurations are related to the 12096 Mermin pentagrams that build a proof of the **three-qubit** Kochen-Specker theorem ⁵. From the structure of hyperplanes of our [63₃] configuration, one learns that we are concerned with the dual of G_2 .

⁴B. M. Stacey, Geometric and information-theoretic properties of the Hoggar lines, arxiv 1609.03075 [quant-ph].

⁵M. Planat, M. Saniga and F. Holweck, Distinguished three-qubit 'magicity' via automorphisms of the split Cayley hexagon, *Quant. Inf. Proc.* **12** 2535-2549 (2013).

Asymmetric IC-POVMs IC-POVM' and the Kochen-Specker theorem

The three-qubit Hoggar SIC: 2

▶ The dual of the generalized hexagon *GH*(2, 2). Grey points have the structure of an embedded generalized hexagon *GH*(2, 1).

イロン イ部 とくほど イヨン 二日

The two-qutrit IC-POVM: 1

Let us consider a magic group isomorphic to Z₃² × Z₄ generated by two magic gates. One finds a few magic states such as (1, 1, 0, 0, 0, 0, -1, 0, -1) that, not only can be used to generate a dichotomic IC-POVM with distinct pairwise products |⟨ψ_i|ψ_j⟩|² equal to ¼ or ¼ or ¼, but also show a quite simple organization of triple products.

Defining lines as triple of projectors with trace $\frac{1}{8}$, one gets a configuration of type [81₃] that split into **nine disjoint copies of the Pappus configuration** [9₃].

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Asymmetric IC-POVMs IC-POVM' and the Kochen-Specker theorem

The two-qutrit IC-POVM: 2

One component of the two-qutrit IC-POVM. The points are labeled in terms of the two-qutrit operators [1, 2, 3, 4, 5, 6, 7, 8, 9] = [I ⊗ Z, I ⊗ XZ, I ⊗ (XZ²)², Z ⊗ I, Z ⊗ X, Z ⊗ X², Z² ⊗ Z², Z² ⊗ (XZ)², Z² ⊗ XZ²], where X and Z are the qutrit shift and clock operators.

- ▶ The Pappus [9₃] may be used to provide an operator proof of 2QT KS theorem (in the same spirit than the one derived for 2QB and 3QB). On one hand, every operator *O* can be assigned a value $\nu(O)$ which is an eigenvalue of *O*, that is 1 or $\pm \omega_3$. Taking the product of eigenvalues over all operators on a line and over all nine lines, one gets ± 1 since $1^3 = 1$, $(\pm \omega_3)^3 = \pm 1$ and every assigned value occurs three times. The whole product is ± 1 .
- ▶ On the other hand, the operators on a line of Pappus do not necessarily commute but their product is $\mathcal{I} = I \otimes I$, $\omega_3 \mathcal{I}$ or $\omega_3^* \mathcal{I}$, depending on the order of operators in the product. Taking the ordered triples [1, 6, 9], [9, 7, 8], [2, 4, 8], [1, 3, 2], [8, 5, 1], [3, 5, 7], [3, 4, 9], [4, 5, 6] and [2, 6, 7], the triple product of these operators from left to right equals \mathcal{I} except for the dotted line where it is $\omega_3 \mathcal{I}$.
- Thus the product law ν(Π⁹_{i=1}O_i) = Π⁹_{i=1}[ν(O_i)] is violated. The left hand side equals ω₃ while the right hand side equals ±1. The lines are not defined by mutually commuting operators so that one cannot arrive at a 2QT KS proof based on vectors instead of operators.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion and perspectives

- Many asymmetric IC-POVMs built thanks to the action of the Pauli group on appropriate permutation generated magic/fiducial states.
- The relationship between such (S)IC-POVMs and the Kochen-Specker theorem
- Perspectives: one can start from the permutation representation of the modular group PSL(2, Z) to relate such problems (and the KS-theorem) to modular forms and elliptic curves (current work).

(ロ) (同) (E) (E) (E)

Appendix: 1. Near (and generalized) polygons

- ► A near polygon is a connected partial linear space *S*, with the property that given a point *x* and a line *L*, there always exists a unique point on *L* nearest to *x*.
- A generalized polygon (or generalized *n*-gon) is an incidence structure between a discrete set of points and lines whose incidence graph has diameter *n* and girth 2n⁶.

The definition implies that a generalized *n*-gon cannot contain *i*-gons for $2 \le i < n$ but can contain ordinary *n*-gons.

A generalized polygon of order (s, t) is such that every line contains s + 1 points and every point lies on t + 1 lines.

A projective plane of order n is a generalized 3-gon. The generalized 4-gons are the generalized quadrangles. Generalized 6-gons, 8-gons, etc are **hexagons**, **octagons**, etc.

According to Feit-Higman theorem, finite generalized n-gons with s>1 and t>1 may exist only for $n\in\{2,3,4,6,8\}$

⁶The **diameter** of a graph is the distance between its furthest points. The **girth** is the shortest path from a vertex to itself.

Appendix: 2. Quantifying geometrical contextuality

Geometry ⁷		u	l/u	$\log_2(h)$	Remark
GQ(2,1)	6	5	1.2	4	Mermin square
GQ(2,2)	15	3	5	5	two-qubit commutation
GQ(2,4)	45	5	9	6	black-hole/qubit analogy
GH(2,1)	14	2	7	8	in the dual of $GH(2,2)^8$
GO(2,1)	30	2	15	16	in GO(2,4) ⁹
GH(2,2)	63	3	21	14	3-qubit contextuality
dual of $GH(2,2)$	63	4	15.75	14	id

Geometric contextuality measure l/u (l the number of lines and u the number of them with mutually commuting cosets) for a few generalized polygons compared $\log_2(h)$ with h the number of geometric hyperplanes within the selected geometry.

⁷A Tits generalized polygon (or generalized *n*-gon) is a point-line incidence structure whose incidence graph has diameter *n* and girth 2n

⁸D. Frohard and, P. Johnson, Geometric hyperplanes in generalized hexagons of order (2, 2), *Comm. Alg.* **22** 773 (1994).

⁹B. De Bruyn, The uniqueness of a certain generalized octagon of order (2,4), Preprint 2011.