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Goals and methods

� It is possible to conciliate informationally complete
measurements on an unknown density matrix: IC-POVMs and
Kochen-Specker (KS) concepts (which forbid hidden variable
theories of a non-contextual type). This was shown for qutrits
1 and it is continued here for two-qubits (2QB), three-qubits
(3QB) and two and three qutrits (2QT & 3QT). Non
symmetric IC-POVMs have been found in dimensions 3 to 12
starting from permutation groups, the derivation of
appropriate non-stabilizer states: magic/fiducial states and
the action of the Pauli group on them 2. For 2QB, 3QB,
2QT and 3QT systems,a Kochen-Specker theorem follows.

1I. Bengtsson, K. Blanchfield and A. Cabello, A Kochen-Specker inequality
from a SIC, Phys. Lett. A376 374-376 (2012).

2M. Planat and Rukhsan-Ul-Haq, The magic of universal quantum
computing with permutations, arxiv 1701.06443 (quant-ph).
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A reminder on SIC-POVMs

� A POVM is a collection of positive semi-definite operators
{E1, . . . ,Em} that sum to the identity. In the measurement of a
state ρ, the i-th outcome is obtained with a probability given by the
Born rule p(i) = tr(ρEi ). For a minimal IC-POVM, one needs d2

one-dimensional projectors Πi = |ψi〉 〈ψi |, with Πi = dEi , such that
the rank of the Gram matrix with elements tr(ΠiΠj), is precisely d2.

� A SIC-POVM further obeys the relation (Renes et al,2004)

|〈ψi |ψj〉|2 = tr(ΠiΠj) =
dδij + 1

d + 1
,

This allows the recovery of the density matrix as (Fuchs, 2004)

ρ =
d2∑
i=1

[
(d + 1)p(i) − 1

d

]
Πi .

This type of quantum tomography is often known as quantum-Bayesian,
where the p(i)’s represent agent’s Bayesian degrees of belief.
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The single qubit SIC-POVM

� One starts from the qubit magic/fiducial state

|T 〉 = cos(β) |0〉+ exp (
iπ

4
) sin(β) |1〉 , cos(2β) =

1√
3
,

employed for universal quantum computation (Bravyi, 2004). It
is defined as the ω3 = exp( 2iπ3 )-eigenstate of the SH matrix [the
product of the Hadamard matrix H and the phase gate S =

(
1 0
0 i

)
].

� Taking the action on |T 〉 of the four Pauli gates I , X , Z and Y ,
the corresponding (pure) projectors Πi = |ψi 〉 〈ψi | , i = 1 . . . 4, sum
to twice the identity matrix thus building a POVM and the pairwise
distinct products satisfy |〈ψi |ψj〉 |2 = 1

3 . The four elements Πi form
the well known 2-dimensional SIC-POVM.

In contrast, there is no POVM attached to the magic state
|H〉 = cos(π

8
) |0〉+ sin(π

8
) |1〉.
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The generalized Pauli group

� Later, we construct IC-POVMs using the covariance with
respect to the generalized d-dimensional Pauli group that is
generated by the shift and clock operators as follows

X |j〉 = |j + 1 mod d〉
Z |j〉 = ωj |j〉 (1)

with ω = exp(2iπ/d) a d-th root of unity.

A general Pauli (also called Heisenberg-Weyl) operator is of the form

T(m,j) =

{
i jmZmX j if d = 2
ω−jm/2ZmX j if d �= 2.

(2)

where (j ,m) ∈ Zd ×Zd . For N particules, one takes the Kronecker
product of qudit elements N times.

Stabilizer states are defined as eigenstates of the Pauli group.
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Informationally complete POVMs: IC-POVMs

� Using permutation groups, we discover minimal IC-POVMs (i.e.
whose rank of the Gram matrix is d2) and with Hermitian angles
|〈ψi |ψj〉|i �=j ∈ A = {a1, . . . , al}, a discrete set of values of small

cardinality l . A SIC is equiangular with |A| = 1 and a1 =
1√
d+1

.

� The states encountered below are considered to live in a
cyclotomic field F = Q[exp( 2iπn )], with n = GCD(d , r), the
greatest common divisor of d and r , for some r . The Hermitian

angle is defined as |〈ψi |ψj〉|i �=j = ‖(ψi , ψj)‖
1

deg , where ‖.‖ means

the field norm 3 of the pair (ψi , ψj) in F and deg is the degree of
the extension F over the rational field Q.

� For the IC-POVMs under consideration below, in dimensions d = 3,
4, 5, 6 and 7, one has to choose n = 3, 12, 20, 6 and 21
respectively, in order to be able to compute the action of the
Pauli group. Calculations are performed with Magma.

3H. Cohen, A course in computational algebraic number theory (Springer,
New York, 1996, p. 162).
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The single qutrit (Hesse) SIC-POVM from permutations: 1

� The symmetric group S3 contains the permutation matrices I , X

and X 2 of the Pauli group, where X =
( 0 1 0
0 0 1
1 0 0

) ≡ (2, 3, 1) and three

extra permutations
( 1 0 0
0 0 1
0 1 0

) ≡ (2, 3),
( 0 0 1
0 1 0
1 0 0

) ≡ (1, 3) and( 0 1 0
1 0 0
0 0 1

) ≡ (1, 2), that do not lie in the Pauli group but are parts of

the Clifford group.

� Taking the eigensystem of the latter matrices, it is not difficult
check that there exists two types of qutrit magic states of the form
(0, 1,±1) ≡ 1√

2
(|0〉+ |1〉 ± |2〉). Then, taking the action of the nine

qutrit Pauli matrices, one arrives at the well known Hesse SIC
(Bengtsson, 2010,Tabia, 2013, Hughston, 2007).
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The single qutrit (Hesse) SIC-POVM from permutations: 2

� The Hesse configuration resulting from the qutrit POVM. The lines of the
configuration correspond to traces of triple products of the corresponding
projectors equal to 1

8
[for the state (0, 1,−1)] and ± 1

8
[for the state

(0, 1, 1)]. Bold lines are for commuting operator pairs.
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IC-POVMs in dimensions 2 to 12

dim magic state |〈ψi |ψj 〉 |2i �=j Geometry

2 |T 〉 1/3 tetrahedron

3 (0, 1,±1) 1/4 Hesse SIC

4 (0, 1,−ω6, ω6 − 1) {1/3, 1/32} Mermin square∗

5 (0, 1,−1,−1, 1) 1/42 Petersen graph
(0, 1, i ,−i ,−1)
(0, 1, 1, 1, 1) {1/32, (2/3)2}

6 (0, 1, ω6 − 1, 0,−ω6, 0) {1/3, 1/32} Borromean rings

7 (1,−ω3 − 1,−ω3, ω3, ω3 + 1,−1, 0) 1/62 unknown

8 (−1± i , 1, 1, 1, 1, 1, 1, 1) 1/9 [633] Hoggar SIC∗

9 (1, 1, 0, 0, 0, 0,−1, 0,−1) {1/4, 1/42} [93] Pappus conf.∗

12 (0, 1, ω6 − 1, ω6 − 1, 1, 1, 8 values Fig. 6
ω6 − 1,−ω6,−ω6, 0,−ω6, 0)

� Magic states of IC-POVMs in dimensions 2 to 12. ∗In dimensions 4, 8
and 9, a proof of the two-qubit, two-qutrit and three-qubit
Kochen-Specker theorem follows from the IC-POVM.
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A two-qubit IC-POVM from permutations and the Mermin square: 1

� From now we restrict to a magic groups ( of gates showing one
entry of 1 on their main diagonals). This only happens for a group
isomorphic to the alternating group

A4
∼=

〈(
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

)
,

(
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)〉
.

One finds magic states of type (0, 1, 1, 1) and (0, 1,−ω6, ω6 − 1),
with ω6 = exp( 2iπ6 ).

� Taking the action of the 2QB Pauli group on the latter type of
state, the corresponding pure projectors sum to 4 times the identity
(to form a POVM) and are independent, with the pairwise distinct
products satisfying the dichotomic relation
tr(ΠiΠj)i �=j = |〈ψi |ψj〉 |2i �=j ∈ { 1

3 ,
1
32 }. Thus the 16 projectors Πi

build an asymmetric informationally complete measurement not
discovered so far.

Michel Planat From informationally complete POVMs to the Kochen-Specker



Asymmetric IC-POVMs
IC-POVM’ and the Kochen-Specker theorem

A two-qubit IC-POVM from permutations and the Mermin square: 2

� The triple products of the four dimensional IC-POVM whose trace equal
± 1

27 and simultaneously equal plus or minus the identity matrix I (−I for
the dotted line). This picture identifies to the well known Mermin square
which allows a proof of the Kochen-Specker theorem.
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The three-qubit Hoggar SIC : 1

� In dimension d = 8, the Hoggar SIC 4 follows from the action of the
three-qubit Pauli group on a fiducial state such as
(−1± i , 1, 1, 1, 1, 1, 1, 1).

� Triple products are related to combinatorial designs. There are 4032
(resp. 16128) triples of projectors whose products have trace equal to − 1

27

(resp. 1
27 ). Within the 4032 triples, those whose product of projectors

equal ±I are organized into a configuration [633] whose incidence graph
kas automorphism group G2(2) = U3(3)� Z2 of order 12096. Two
isospectral configurations of this type exist, one is the so-called
generalized hexagon GH(2, 2) (also called split Cayley hexagon) and the
other one is its dual (Frohard, 1994). These configurations are related to
the 12096 Mermin pentagrams that build a proof of the three-qubit
Kochen-Specker theorem 5. From the structure of hyperplanes of our
[633] configuration, one learns that we are concerned with the dual of G2.

4B. M. Stacey, Geometric and information-theoretic properties of the
Hoggar lines, arxiv 1609.03075 [quant-ph].

5M. Planat, M. Saniga and F. Holweck, Distinguished three-qubit ‘magicity’
via automorphisms of the split Cayley hexagon, Quant. Inf. Proc. 12
2535-2549 (2013).
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The three-qubit Hoggar SIC: 2

1

2

3

4

5

6

7

8

9

10

11

13

14

17

18

19

20

21
23

24

30

33

34

35

36

39

40

45

46

48

49

50

51

52

53

54 57

58

59

60

61

63

27

22

62

32

28

38

55
47

44

42

43

37
56

31

16

12

29 26

41

15

25

� The dual of the generalized hexagon GH(2, 2). Grey points have the
structure of an embedded generalized hexagon GH(2, 1).
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The two-qutrit IC-POVM: 1

� Let us consider a magic group isomorphic to Z2
3 � Z4 generated by

two magic gates. One finds a few magic states such as
(1, 1, 0, 0, 0, 0,−1, 0,−1) that, not only can be used to generate a
dichotomic IC-POVM with distinct pairwise products
|〈ψi |ψj〉 |2 equal to 1

4 or 1
42 , but also show a quite simple

organization of triple products.

Defining lines as triple of projectors with trace 1
8 , one gets a

configuration of type [813] that split into nine disjoint copies of
the Pappus configuration [93].
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The two-qutrit IC-POVM: 2

� One component of the two-qutrit IC-POVM. The points are labeled in
terms of the two-qutrit operators [1, 2, 3, 4, 5, 6, 7, 8, 9] = [I ⊗ Z , I ⊗
XZ , I ⊗ (XZ 2)2,Z ⊗ I ,Z ⊗ X ,Z ⊗ X 2,Z 2 ⊗ Z 2,Z 2 ⊗ (XZ )2,Z 2 ⊗ XZ 2],
where X and Z are the qutrit shift and clock operators.
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The two-qutrit IC-POVM: 3

� The Pappus [93] may be used to provide an operator proof of 2QT KS
theorem (in the same spirit than the one derived for 2QB and 3QB). On
one hand, every operator O can be assigned a value ν(O) which is an
eigenvalue of O, that is 1 or ±ω3. Taking the product of eigenvalues
over all operators on a line and over all nine lines, one gets ±1 since
13 = 1, (±ω3)

3 = ±1 and every assigned value occurs three times. The
whole product is ±1.

� On the other hand, the operators on a line of Pappus do not necessarily
commute but their product is I = I ⊗ I , ω3I or ω∗

3I, depending on the
order of operators in the product. Taking the ordered triples [1, 6, 9],
[9, 7, 8], [2, 4, 8], [1, 3, 2], [8, 5, 1], [3, 5, 7], [3, 4, 9], [4, 5, 6] and [2, 6, 7],
the triple product of these operators from left to right equals I except
for the dotted line where it is ω3I.

� Thus the product law ν(Π9
i=1Oi ) = Π9

i=1[ν(Oi)] is violated. The left
hand side equals ω3 while the right hand side equals ±1. The lines are
not defined by mutually commuting operators so that one cannot arrive
at a 2QT KS proof based on vectors instead of operators.
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Conclusion and perspectives

� Many asymmetric IC-POVMs built thanks to the action of the Pauli
group on appropriate permutation generated magic/fiducial states.

� The relationship between such (S)IC-POVMs and the Kochen-Specker
theorem

� Perspectives: one can start from the permutation representation of the
modular group PSL(2,Z) to relate such problems (and the KS-theorem)
to modular forms and elliptic curves (current work).
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Appendix: 1. Near (and generalized) polygons

� A near polygon is a connected partial linear space S , with the
property that given a point x and a line L, there always exists a
unique point on L nearest to x .

� A generalized polygon (or generalized n-gon) is an incidence
structure between a discrete set of points and lines whose incidence
graph has diameter n and girth 2n 6.
The definition implies that a generalized n-gon cannot contain i -gons for
2 ≤ i < n but can contain ordinary n-gons.

A generalized polygon of order (s, t) is such that every line
contains s + 1 points and every point lies on t + 1 lines.
A projective plane of order n is a generalized 3-gon. The generalized 4-gons are
the generalized quadrangles. Generalized 6-gons, 8-gons, etc are hexagons,
octagons, etc.

According to Feit-Higman theorem, finite generalized n-gons with s > 1 and
t > 1 may exist only for n ∈ {2, 3, 4, 6, 8}

6The diameter of a graph is the distance between its furthest points. The
girth is the shortest path from a vertex to itself.
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Appendix: 2. Quantifying geometrical contextuality

Geometry 7 l u l/u log2(h) Remark

GQ(2, 1) 6 5 1.2 4 Mermin square
GQ(2, 2) 15 3 5 5 two-qubit commutation
GQ(2, 4) 45 5 9 6 black-hole/qubit analogy
GH(2, 1) 14 2 7 8 in the dual of GH(2, 2) 8

GO(2, 1) 30 2 15 16 in GO(2, 4) 9

GH(2, 2) 63 3 21 14 3-qubit contextuality
dual of GH(2, 2) 63 4 15.75 14 id

Geometric contextuality measure l/u (l the number of lines and u the
number of them with mutually commuting cosets) for a few generalized
polygons compared log2(h) with h the number of geometric hyperplanes
within the selected geometry.

7A Tits generalized polygon (or generalized n-gon) is a point-line incidence
structure whose incidence graph has diameter n and girth 2n

8D. Frohard and, P. Johnson, Geometric hyperplanes in generalized
hexagons of order (2, 2), Comm. Alg. 22 773 (1994).

9B. De Bruyn, The uniqueness of a certain generalized octagon of order
(2, 4), Preprint 2011.
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