From informationally complete POVMs to the Kochen-Specker theorem

Michel Planat

Université de Bourgogne/Franche-Comté, Institut FEMTO-ST CNRS
UMR 6174, 15 B Avenue des Montboucons, F-25044 Besançon, France.
michel.planat@femto-st.fr

Quantum Contextuality in Quantum Mechanics and Beyond,
Prague, Czech Republic, June 4-5 (2017).
It is possible to conciliate informationally complete measurements on an unknown density matrix: IC-POVMs and Kochen-Specker (KS) concepts (which forbid hidden variable theories of a non-contextual type). This was shown for qutrits and it is continued here for two-qubits (2QB), three-qubits (3QB) and two and three qutrits (2QT & 3QT). Non-symmetric IC-POVMs have been found in dimensions 3 to 12 starting from permutation groups, the derivation of appropriate non-stabilizer states: magic/fiducial states and the action of the Pauli group on them. For 2QB, 3QB, 2QT and 3QT systems, a Kochen-Specker theorem follows.

A POVM is a collection of positive semi-definite operators \{E_1, \ldots, E_m\} that sum to the identity. In the measurement of a state \(\rho\), the \(i\)-th outcome is obtained with a probability given by the **Born rule** \(p(i) = \text{tr}(\rho E_i)\). For a **minimal IC-POVM**, one needs \(d^2\) one-dimensional projectors \(\Pi_i = |\psi_i\rangle \langle \psi_i|\), with \(\Pi_i = d E_i\), such that the rank of the Gram matrix with elements \(\text{tr}(\Pi_i \Pi_j)\), is precisely \(d^2\).

A **SIC-POVM** further obeys the relation (Renes et al, 2004)

\[
|\langle \psi_i | \psi_j \rangle|^2 = \text{tr}(\Pi_i \Pi_j) = \frac{d \delta_{ij} + 1}{d + 1},
\]

This allows the recovery of the density matrix as (Fuchs, 2004)

\[
\rho = \sum_{i=1}^{d^2} \left[(d + 1)p(i) - \frac{1}{d} \right] \Pi_i.
\]

This type of quantum tomography is often known as quantum-Bayesian, where the \(p(i)\)'s represent agent’s Bayesian degrees of belief.
One starts from the qubit magic/fiducial state

\[|T\rangle = \cos(\beta)|0\rangle + \exp\left(\frac{i\pi}{4}\right)\sin(\beta)|1\rangle, \quad \cos(2\beta) = \frac{1}{\sqrt{3}}, \]

employed for \textit{universal quantum computation} (Bravyi, 2004). It is defined as the \(\omega_3 = \exp\left(\frac{2i\pi}{3}\right) \)-eigenstate of the \(SH \) matrix [the product of the Hadamard matrix \(H \) and the phase gate \(S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \)].

Taking the \textbf{action on} \(|T\rangle \) of the four Pauli gates \(I, X, Z \) and \(Y \), the corresponding (pure) projectors \(\Pi_i = |\psi_i\rangle \langle \psi_i|, i = 1 \ldots 4 \), sum to twice the identity matrix thus building a POVM and the pairwise distinct products satisfy \(|\langle \psi_i|\psi_j\rangle|^2 = \frac{1}{3} \). The four elements \(\Pi_i \) form the well known \textbf{2-dimensional SIC-POVM}.

In contrast, there is no POVM attached to the magic state

\[|H\rangle = \cos\left(\frac{\pi}{8}\right)|0\rangle + \sin\left(\frac{\pi}{8}\right)|1\rangle. \]
Later, we construct IC-POVMs using the covariance with respect to the generalized d-dimensional Pauli group that is generated by the shift and clock operators as follows

$$X |j\rangle = |j + 1 \mod d\rangle$$
$$Z |j\rangle = \omega^j |j\rangle$$

with $\omega = \exp(2i\pi/d)$ a d-th root of unity.

A general Pauli (also called Heisenberg-Weyl) operator is of the form

$$T_{(m,j)} = \begin{cases}
 i^{jm} Z^m X^j & \text{if } d = 2 \\
 \omega^{-jm/2} Z^m X^j & \text{if } d \neq 2.
\end{cases}$$

where $(j, m) \in \mathbb{Z}_d \times \mathbb{Z}_d$. For N particles, one takes the Kronecker product of qudit elements N times.

Stabilizer states are defined as eigenstates of the Pauli group.
Using **permutation groups**, we discover **minimal IC-POVMs** (i.e. whose rank of the Gram matrix is d^2) and with Hermitian angles $|\langle \psi_i | \psi_j \rangle |_{i \neq j} \in A = \{a_1, \ldots, a_l\}$, a discrete set of values of small cardinality l. A SIC is equiangular with $|A| = 1$ and $a_1 = \frac{1}{\sqrt{d+1}}$.

The states encountered below are considered to live in a **cyclotomic field** $\mathbb{F} = \mathbb{Q}[\exp(\frac{2i\pi}{n})]$, with $n = \text{GCD}(d, r)$, the greatest common divisor of d and r, for some r. The Hermitian angle is defined as $|\langle \psi_i | \psi_j \rangle |_{i \neq j} = \| (\psi_i, \psi_j) \|_1^{\frac{1}{\text{deg}}}$, where $\| . \|$ means the field norm of the pair (ψ_i, ψ_j) in \mathbb{F} and deg is the degree of the extension \mathbb{F} over the rational field \mathbb{Q}.

For the IC-POVMs under consideration below, in dimensions $d = 3, 4, 5, 6$ and 7, one has to choose $n = 3, 12, 20, 6$ and 21 respectively, in order to be able to **compute the action of the Pauli group**. Calculations are performed with **Magma**.

The symmetric group S_3 contains the permutation matrices I, X and X^2 of the Pauli group, where $X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \equiv (2, 3, 1)$ and three extra permutations $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \equiv (2, 3)$, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \equiv (1, 3)$ and $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \equiv (1, 2)$, that do not lie in the Pauli group but are parts of the Clifford group.

Taking the eigensystem of the latter matrices, it is not difficult check that there exists two types of qutrit magic states of the form $(0, 1, \pm 1) \equiv \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle \pm |2\rangle)$. Then, taking the action of the nine qutrit Pauli matrices, one arrives at the well known Hesse SIC (Bengtsson, 2010, Tabia, 2013, Hughston, 2007).
The single qutrit (Hesse) SIC-POVM from permutations: 2

The Hesse configuration resulting from the qutrit POVM. The lines of the configuration correspond to traces of triple products of the corresponding projectors equal to \(\frac{1}{8} \) [for the state \((0, 1, -1)\)] and \(\pm \frac{1}{8} \) [for the state \((0, 1, 1)\)]. Bold lines are for commuting operator pairs.

Magic qutrit POVM's

\((0,1,1)\) or \((0,1,-1)\)
| dim | magic state | \(|\langle \psi_i | \psi_j \rangle |^2_{i \neq j}\) | Geometry |
|-----|-------------|------------------|-----------|
| 2 | \(|T\rangle\) | 1/3 | tetrahedron |
| 3 | \((0, 1, \pm 1)\) | 1/4 | Hesse SIC |
| 4 | \((0, 1, -\omega_6, \omega_6 - 1)\) | \(\{1/3, 1/3^2\}\) | **Mermin square*** |
| 5 | \((0, 1, -1, -1, 1)\) | 1/4^2 | Petersen graph |
| | \((0, 1, i, -i, -1)\) | \(\{1/3^2, (2/3)^2\}\) | |
| | \((0, 1, 1, 1, 1)\) | | |
| 6 | \((0, 1, \omega_6 - 1, 0, -\omega_6, 0)\) | \(\{1/3, 1/3^2\}\) | **Borromean rings** |
| 7 | \((1, -\omega_3 - 1, -\omega_3, \omega_3, \omega_3 + 1, -1, 0)\) | 1/6^2 | unknown |
| 8 | \((-1 \pm i, 1, 1, 1, 1, 1, 1, 1)\) | 1/9 | **Hoggar SIC*** |
| 9 | \((1, 1, 0, 0, 0, 0, -1, 0, -1)\) | \(\{1/4, 1/4^2\}\) | **Pappus conf.*** |
| 12 | \((0, 1, \omega_6 - 1, \omega_6 - 1, 1, 1, \omega_6 - 1, -\omega_6, -\omega_6, 0, -\omega_6, 0)\) | 8 values | Fig. 6 |

* Magic states of IC-POVMs in dimensions 2 to 12. *In dimensions 4, 8 and 9, a proof of the two-qubit, two-qutrit and three-qubit Kochen-Specker theorem follows from the IC-POVM.
From now we restrict to a magic groups of gates showing one entry of 1 on their main diagonals). This only happens for a group isomorphic to the alternating group

\[A_4 \cong \langle (\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}), (\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}) \rangle. \]

One finds magic states of type \((0, 1, 1, 1)\) and \((0, 1, -\omega_6, \omega_6 - 1)\), with \(\omega_6 = \exp(\frac{2i\pi}{6})\).

Taking the action of the 2QB Pauli group on the latter type of state, the corresponding pure projectors sum to 4 times the identity (to form a POVM) and are independent, with the pairwise distinct products satisfying the dichotomic relation

\[\text{tr}(\Pi_i \Pi_j)_{i \neq j} = |\langle \psi_i | \psi_j \rangle|^2_{i \neq j} \in \{\frac{1}{3}, \frac{1}{3^2}\}. \]

Thus the 16 projectors \(\Pi_i\) build an asymmetric informationally complete measurement not discovered so far.
The triple products of the four dimensional IC-POVM whose trace equal $\pm \frac{1}{27}$ and simultaneously equal plus or minus the identity matrix I ($-I$ for the dotted line). This picture identifies to the well known Mermin square which allows a proof of the Kochen-Specker theorem.
In dimension $d = 8$, the **Hoggar SIC**\(^4\) follows from the action of the three-qubit Pauli group on a fiducial state such as \((-1 \pm i, 1, 1, 1, 1, 1, 1, 1, 1)\).

Triple products are related to combinatorial designs. There are 4032 (resp. 16128) triples of projectors whose products have trace equal to $-\frac{1}{27}$ (resp. $\frac{1}{27}$). Within the 4032 triples, those whose product of projectors equal $\pm I$ are organized into a configuration $[63_3]$ whose incidence graph has automorphism group $G_2(2) = U_3(3) \rtimes \mathbb{Z}_2$ of order 12096. Two isospectral configurations of this type exist, one is the so-called **generalized hexagon** $GH(2, 2)$ (also called split Cayley hexagon) and the other one is **its dual** (Frohard, 1994). These configurations are related to the 12096 **Mermin pentagrams** that build a proof of the **three-qubit Kochen-Specker theorem**\(^5\). From the structure of hyperplanes of our $[63_3]$ configuration, one learns that we are concerned with the dual of G_2.

\(^4\)B. M. Stacey, Geometric and information-theoretic properties of the Hoggar lines, arxiv 1609.03075 [quant-ph].

The three-qubit Hoggar SIC: 2

- The dual of the generalized hexagon $GH(2, 2)$. Grey points have the structure of an embedded generalized hexagon $GH(2, 1)$.
Let us consider a magic group isomorphic to $\mathbb{Z}_3^2 \times \mathbb{Z}_4$ generated by two magic gates. One finds a few magic states such as $(1, 1, 0, 0, 0, 0, -1, 0, -1)$ that, not only can be used to generate a dichotomic IC-POVM with distinct pairwise products $|\langle \psi_i | \psi_j \rangle|^2$ equal to $\frac{1}{4}$ or $\frac{1}{4^2}$, but also show a quite simple organization of triple products.

Defining lines as triple of projectors with trace $\frac{1}{8}$, one gets a configuration of type [813] that split into nine disjoint copies of the Pappus configuration [93].
One component of the two-qutrit IC-POVM. The points are labeled in terms of the two-qutrit operators $[1, 2, 3, 4, 5, 6, 7, 8, 9] = [I \otimes Z, I \otimes XZ, I \otimes (XZ^2)^2, Z \otimes I, Z \otimes X, Z \otimes X^2, Z^2 \otimes Z^2, Z^2 \otimes (XZ)^2, Z^2 \otimes XZ^2]$, where X and Z are the qutrit shift and clock operators.
The Pappus [93] may be used to provide an operator proof of 2QT KS theorem (in the same spirit than the one derived for 2QB and 3QB). On one hand, every operator O can be assigned a value $\nu(O)$ which is an eigenvalue of O, that is 1 or $\pm \omega_3$. Taking the product of eigenvalues over all operators on a line and over all nine lines, one gets ± 1 since $1^3 = 1$, $(\pm \omega_3)^3 = \pm 1$ and every assigned value occurs three times. The whole product is ± 1.

On the other hand, the operators on a line of Pappus do not necessarily commute but their product is $I = I \otimes I$, $\omega_3 I$ or $\omega_3^* I$, depending on the order of operators in the product. Taking the ordered triples $[1, 6, 9]$, $[9, 7, 8]$, $[2, 4, 8]$, $[1, 3, 2]$, $[8, 5, 1]$, $[3, 5, 7]$, $[3, 4, 9]$, $[4, 5, 6]$ and $[2, 6, 7]$, the triple product of these operators from left to right equals I except for the dotted line where it is $\omega_3 I$.

Thus the product law $\nu(\prod_{i=1}^9 O_i) = \prod_{i=1}^9 [\nu(O_i)]$ is violated. The left hand side equals ω_3 while the right hand side equals ± 1. The lines are not defined by mutually commuting operators so that one cannot arrive at a 2QT KS proof based on vectors instead of operators.
Many asymmetric IC-POVMs built thanks to the action of the Pauli group on appropriate permutation generated magic/fiducial states.

The relationship between such (S)IC-POVMs and the Kochen-Specker theorem

Perspectives: one can start from the permutation representation of the modular group $PSL(2, \mathbb{Z})$ to relate such problems (and the KS-theorem) to modular forms and elliptic curves (current work).
Appendix: 1. Near (and generalized) polygons

▶ A **near polygon** is a connected partial linear space S, with the property that given a point x and a line L, there always exists a unique point on L nearest to x.

▶ A **generalized polygon** (or generalized n-gon) is an incidence structure between a discrete set of points and lines whose incidence graph has diameter n and girth $2n$.

The definition implies that a generalized n-gon cannot contain i-gons for $2 \leq i < n$ but can contain ordinary n-gons.

A generalized polygon of order (s, t) **is such that every line contains** $s + 1$ **points and every point lies on** $t + 1$ **lines.**

A projective plane of order n is a generalized 3-gon. The generalized 4-gons are the **generalized quadrangles**. Generalized 6-gons, 8-gons, etc are **hexagons**, **octagons**, etc.

According to Feit-Higman theorem, finite generalized n-gons with $s > 1$ and $t > 1$ may exist only for $n \in \{2, 3, 4, 6, 8\}$

6 The **diameter** of a graph is the distance between its furthest points. The **girth** is the shortest path from a vertex to itself.
Appendix: 2. Quantifying geometrical contextuality

<table>
<thead>
<tr>
<th>Geometry</th>
<th>l</th>
<th>u</th>
<th>l/u</th>
<th>$\log_2(h)$</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GQ(2,1)$</td>
<td>6</td>
<td>5</td>
<td>1.2</td>
<td>4</td>
<td>Mermin square</td>
</tr>
<tr>
<td>$GQ(2,2)$</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>two-qubit commutation black-hole/qubit analogy</td>
</tr>
<tr>
<td>$GQ(2,4)$</td>
<td>45</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>in the dual of $GH(2,2)$</td>
</tr>
<tr>
<td>$GH(2,1)$</td>
<td>14</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>in $GO(2,4)$</td>
</tr>
<tr>
<td>$GO(2,1)$</td>
<td>30</td>
<td>2</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>$GH(2,2)$</td>
<td>63</td>
<td>3</td>
<td>21</td>
<td>14</td>
<td>3-qubit contextuality</td>
</tr>
<tr>
<td>dual of $GH(2,2)$</td>
<td>63</td>
<td>4</td>
<td>15.75</td>
<td>14</td>
<td>id</td>
</tr>
</tbody>
</table>

Geometric contextuality measure l/u (l the number of lines and u the number of them with mutually commuting cosets) for a few generalized polygons compared $\log_2(h)$ with h the number of geometric hyperplanes within the selected geometry.

7A Tits generalized polygon (or generalized n-gon) is a point-line incidence structure whose incidence graph has diameter n and girth $2n$
