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Abstract
We show that there exists no two-valued lattice homomorphism from the lattice L (H ) of all closed linear

subspaces of a Hilbert space with dim(H ) ≥ 2 by using the notion of prime filters.

Introduction
The lattice L (H ) of all closed linear subspaces of a Hilbert space H can be seen as the set of
experimental propositions of a quantum system, and its lattice structures are considered as logical op-
erations [2]. Then the non-existence of two-valued lattice homomorphisms φ : L (H ) → 2 implies
that we can not assign values of truth or falsity for each proposition non-contextually. We show this
non-existence of two-valued lattice homomorphisms by using the notion of prime filters. This idea
using prime filters is due to [5], and we complete the proof.

Preliminaries
Definition 1: lattices

For a non-empty set L , a binary relation ≤ on L is called a partial order if ≤ is reflexive,
transitive and antisymmetric.

A pair (L ,≤) consists of a non-empty set L and a partial order ≤ on L is called a partially
ordered set (or poset for short). A poset (L ,≤) is said to be bounded if it has both the maximum
element 1 and minimum element 0 with respect to ≤, and denote it by (L ,≤, 0, 1).

A poset (L ,≤) is a lattice if there exist both the supremum (least upper bound) a ∨ b and the
infimum (greatest lower bound) a ∧ b for all a, b ∈ L .

A lattice (L ,≤) is said to be distributive if the following two conditions hold:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L ;

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L .

Example 1

• For a set X , (2X ,⊆, ∅, X) is a bounded distributive lattice.

• For a Hilbert space H with dim(H ) ≥ 2, (L (H ),⊆, {0},H ) is a bounded lattice but not
distributive.

Definition 2: quantum logic

For a Hilbert space H , we call the lattice of all closed linear subspaces of H the quantum logic
associated with H , and denote it by L (H ).

Definition 3: lattice homomorphisms

For two bounded lattices (L1,≤1, 0, 1), (L2,≤2, 0, 1), a mapping φ : L1 → L2 is called a lattice
homomorphism if φ satisfies the following conditions:

• φ(0) = 0, φ(1) = 1;

• φ(a ∨1 b) = φ(a) ∨2 φ(b), φ(a ∧1 b) = φ(a) ∧2 φ(b) for all a, b ∈ L1.

In particular, if L2 = 2 = {0, 1}, we say that φ is two-valued.
A lattice homomorphism φ is called a lattice isomorphism if φ is bijective; and we say that L1

is isomorphic to L2.

Definition 4: filters

Let (L ,≤, 0, 1) be a bounded lattice. A subset F of L is called a (proper) filter in (L ,≤, 0, 1) if
the following three conditions hold:

1. 0 ̸∈ F and 1 ∈ F ;

2. a ∧ b ∈ F for all a, b ∈ F ;

3. a ≤ b and a ∈ F imply b ∈ F for all a, b ∈ L .

A filter F is called a prime filter if for all a, b ∈ L ,

a ∨ b ∈ F implies a ∈ F or b ∈ F .

Distributive lattices have “enough” prime filters.

Fact 1: [1, Theorem 0.7]

For every bounded distributive lattice (L ,≤, 0, 1), there exists a bounded distributive lattice of
subsets of the set of all prime filters in (L ,≤, 0, 1) which is isomorphic to (L ,≤, 0, 1).

Proof. (Sketch) Let P(L ) be the set of all prime filters in (L ,≤, 0, 1). A mapping

φ : a 7→ P(a) := {F ∈ P(L ) | a ∈ F} .

gives a lattice isomorphism from (L ,≤, 0, 1) to ({P(a)}a∈L ,⊆, ∅,P(L )). ■

Lemma 1: [1, p. 9]

Let (L ,≤, 0, 1) be a bounded lattice and F a subset of L . Then the following conditions are
equivalent:

(a) F is a prime filter;

(b) F = φ−1(1) for some two-valued lattice homomorphism φ : L → 2.

Proof. (Sketch) (a) =⇒ (b): Suppose that F is a prime filter. Then a mapping φ : L → 2 defined
by

φ(a) =

{
1 (a ∈ F),

0 (a ∈ L \ F)

satisfies F = φ−1(1), and one can verify that φ is a lattice homomorphism from L to 2.
(b) =⇒ (a): Suppose that F = φ−1(1) for some lattice homomorphism φ : L → 2. Then one can

verify that F is a prime filter. ■

Main theorem
Theorem 1

Let H be a Hilbert space with dim(H ) ≥ 2. Then there exists no two-valued lattice homomor-
phism φ : L (H ) → 2.

Proof. First, we shall consider the case that H is a finite dimensional Hilbert space, say dim(H ) =
n (n ∈ N, n ≥ 2). Suppose that there exists a two-valued lattice homomorphism φ : L (H ) → 2. By
Lemma 1, there exists a prime filter F in L (H ) such that φ−1(1) = F . We claim that there exists a
(n− 1)-dimensional linear subspace M ∈ L (H ) such that M ̸∈ F . Let {ei}ni=1 be an orthonormal
system of H . Put

Ei := span({ei}) (i = 1, . . . , n).

Then we have

n∨
i=1

φ(Ei) = φ

 n∨
i=1

Ei

 = φ(H ) = 1.

This implies that there exists a number i = 1, . . . , n such that φ(Ei) = 1, i.e., Ei ∈ F ; and since F is
a filter, we have E⊥

i ̸∈ F . This shows the above claim. We fix a (n− 1)-dimensional linear subspace
M ∈ L (H ) such that M ̸∈ F .

Now, consider the case that dim(H ) = 2. Then there exists a one-dimensional linear subspace
N ∈ L (H ) such that N ̸= M and N ̸∈ F . Since N ̸= M and dim(H ) = 2, we have
M ∨ N = H ∈ F . Since F is a prime filter, we obtain M ∈ F or N ∈ F . This contradicts
to the condition that M,N ̸∈ F .

Next, we shall consider the case that 3 ≤ dim(H ) < ℵ0. Since dim(M) ≥ 2 and dim(M⊥) = 1, we
can take non-zero vectors x, y, z ∈ H such that

x, y ∈ M, x ⊥ y;

z ∈ M⊥.

Put

M1 :=span({x + z}),
M2 :=span({y + z}).

Then we have

M1 ∧M2 = {0} ̸∈ F ,

M1 ∨M = H ∈ F ,

M2 ∨M = H ∈ F .

Since F is a prime filter, we have

M1 ∈ F or M ∈ F

and
M2 ∈ F or M ∈ F .

Now, since M ̸∈ F , we must have

M1 ∈ F and M2 ∈ F .

Since F is a filter, we obtain
{0} = M1 ∧M2 ∈ F .

This is a contradiction. Therefore, there exists no two-valued lattice homomorphism φ : L (H ) → 2
for the case that 2 ≤ dim(H ) < ℵ0.

Finally, we consider the case that H is a infinite dimensional Hilbert space. Then the quantum logic
L (Hn) associated with a n-dimensional Hilbert space Hn (n ∈ N, n ≥ 2) can be embedded into
L (H ) by an embedding ι : L (Hn) → L (H ). If there exists a two-valued lattice homomorphism
φ : L (H ) → 2, then the composite φ ◦ ι : L (Hn) → 2 gives a two-valued lattice homomorphism,
which is impossible as we have shown in the above. Consequently, for any Hilbert space H with
dim(H ) ≥ 2, there exists no two-valued lattice homomorphism φ : L (H ) → 2. ■
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