On Noncontextual, Non-Kolmogorovian Hidden Variable Theories

Samuel C. Fletcher¹ Benjamin H. Feintzeig²

¹Department of Philosophy University of Minnesota, Twin Cities

Munich Center for Mathematical Philosophy Ludwig-Maximilians-Universität

> ²Department of Philosophy University of Washington

> > 5 June, 2017

- Fine (1982), Pitowsky (1989): satisfaction of Bell inequalities equivalent to existence of Kolmogorovian hidden variable model.
 - Hence motivation for using slight generalizations of classical probability.
- But what about the Kochen-Specker theorem? The conjunction of
 - value realism,
 - value definiteness,
 - and noncontextuality

is incompatible with QM.

- Fine (1982), Pitowsky (1989): satisfaction of Bell inequalities equivalent to existence of Kolmogorovian hidden variable model.
 - Hence motivation for using slight generalizations of classical probability.
- But what about the Kochen-Specker theorem? The conjunction of
 - · value realism.
 - value definiteness,
 - and noncontextuality

is incompatible with QM.

- Fine (1982), Pitowsky (1989): satisfaction of Bell inequalities equivalent to existence of Kolmogorovian hidden variable model.
 - Hence motivation for using slight generalizations of classical probability.
- But what about the Kochen-Specker theorem? The conjunction of
 - · value realism.
 - value definiteness,
 - and noncontextuality

is incompatible with QM.

- Fine (1982), Pitowsky (1989): satisfaction of Bell inequalities equivalent to existence of Kolmogorovian hidden variable model.
 - Hence motivation for using slight generalizations of classical probability.
- But what about the Kochen-Specker theorem? The conjunction of
 - value realism,
 - value definiteness,
 - and noncontextuality

is incompatible with QM.

- Fine (1982), Pitowsky (1989): satisfaction of Bell inequalities equivalent to existence of Kolmogorovian hidden variable model.
 - Hence motivation for using slight generalizations of classical probability.
- But what about the Kochen-Specker theorem? The conjunction of
 - value realism,
 - value definiteness,
 - and noncontextuality

is incompatible with QM.

Outline

- 1 Bell's Theorem à la Fine and Pitowsky
- 2 The KS and Our Theorem
- 3 Applications
- 4 Observations and Conclusions

Outline

- 1 Bell's Theorem à la Fine and Pitowsky
- 2 The KS and Our Theorem
- 3 Applications
- 4 Observations and Conclusions

Standard Non-Relativistic QM

Definition

A simple quantum mechanical experiment is a triple $(\mathcal{H}, \psi, \mathcal{O}_n)$, where \mathcal{H} is a Hilbert space, $\psi \in \mathcal{H}$ is a unit vector, and $\mathcal{O}_n = \{P_1, \dots, P_n\}$ is a collection of n projection operators on \mathcal{H} .

Kolmogorovian Probability

Definition

A (σ -)algebra Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1 for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 for all $A, B \in \Sigma$, $A \cup B \in \Sigma$.

Definition

A classical probability space is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)algebra for X and $\mu: \Sigma \to [0,1]$ is such that

- **1** $\mu(X) = 1$; and
- ② for all disjoint $A, B \in \Sigma$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Kolmogorovian Probability

Definition

A (σ -)algebra Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1 for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 for all $A, B \in \Sigma$, $A \cup B \in \Sigma$.

Definition

A classical probability space is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)algebra for X and $\mu : \Sigma \to [0, 1]$ is such that

- **1** $\mu(X) = 1$; and
- ② for all disjoint $A, B \in \Sigma$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Bell's Theorem is about Classical Probability

Definition

A (restricted) classical probability space representation for a simple quantum mechanical experiment $(\mathcal{H}, \psi, \mathcal{O}_n)$ is a classical probability space (X, Σ, μ) and a map $E : \mathcal{O}_n \to \Sigma$ satisfying both of the following conditions:

- 1 for each $P_i \in \mathcal{O}_n$, $\mu(E(P_i)) = \langle \psi | P_i | \psi \rangle$; and
- 2 for each $P_i, P_j \in \mathcal{O}_n$, if $[P_i, P_j] = 0$, then $\mu(\mathcal{E}(P_i) \cap \mathcal{E}(P_i)) = \langle \psi | P_i P_j | \psi \rangle$.

Theorem (Fine, 1982; Pitowsky, 1989)

The probabilities for outcomes of a simple quantum mechanical experiment satisfy all Bell-type inequalities iff the experiment has a classical probability space representation.

Bell's Theorem is about Classical Probability

Definition

A (restricted) classical probability space representation for a simple quantum mechanical experiment $(\mathcal{H}, \psi, \mathcal{O}_n)$ is a classical probability space (X, Σ, μ) and a map $E : \mathcal{O}_n \to \Sigma$ satisfying both of the following conditions:

- 1 for each $P_i \in \mathcal{O}_n$, $\mu(E(P_i)) = \langle \psi | P_i | \psi \rangle$; and
- 2 for each $P_i, P_j \in \mathcal{O}_n$, if $[P_i, P_j] = 0$, then $\mu(\mathcal{E}(P_i) \cap \mathcal{E}(P_i)) = \langle \psi | P_i P_j | \psi \rangle$.

Theorem (Fine, 1982; Pitowsky, 1989)

The probabilities for outcomes of a simple quantum mechanical experiment satisfy all Bell-type inequalities iff the experiment has a classical probability space representation.

Bell's Theorem is about Classical Probability (cont'd)

Corollary

There is a simple quantum mechanical experiment with no classical probability space representation.

These are just the ones that predict violations of Bell inequalities.

Bell's Theorem is about Classical Probability (cont'd)

Corollary

There is a simple quantum mechanical experiment with no classical probability space representation.

These are just the ones that predict violations of Bell inequalities.

Outline

- 1 Bell's Theorem à la Fine and Pitowsky
- 2 The KS and Our Theorem
- 3 Applications
- 4 Observations and Conclusions

The Kochen-Specker Theorem

Theorem (Kochen-Specker)

For any Hilbert space $\mathcal H$ of dimension at least 3, there is a finite collection of projection operators $\mathcal O_n$ on it such that there is no function $f:\mathcal O_n \to \{0,1\}$ that assigns 1 to exactly one element of every subset of $\mathcal O_n$ whose elements are mutually orthogonal and span $\mathcal H$.

Definition

A **KS-witness** is a simple quantum mechanical experiment $(\mathcal{H}, \psi, \mathcal{O}_n)$ such that $\dim(\mathcal{H}) \geq 3$ and there is no function $f: \mathcal{O}_n \to \{0,1\}$ that assigns 1 to exactly one element of every subset of \mathcal{O}_n whose elements are mutually orthogonal and span \mathcal{H} .

The Kochen-Specker Theorem

Theorem (Kochen-Specker)

For any Hilbert space $\mathcal H$ of dimension at least 3, there is a finite collection of projection operators $\mathcal O_n$ on it such that there is no function $f:\mathcal O_n\to\{0,1\}$ that assigns 1 to exactly one element of every subset of $\mathcal O_n$ whose elements are mutually orthogonal and span $\mathcal H$.

Definition

A **KS-witness** is a simple quantum mechanical experiment $(\mathcal{H}, \psi, \mathcal{O}_n)$ such that $\dim(\mathcal{H}) \geq 3$ and there is no function $f: \mathcal{O}_n \to \{0,1\}$ that assigns 1 to exactly one element of every subset of \mathcal{O}_n whose elements are mutually orthogonal and span \mathcal{H} .

Weak Representations

Definition

A weak (noncontextual) probability space is an ordered triple (X, Σ, μ) , where X is a nonempty set, $\Sigma \subseteq \wp(X)$ is nonempty, and $\mu : \Sigma \to Y \supseteq [0, 1]$.

Definition

A weak hidden variable representation for a simple quantum mechanical experiment $(\mathcal{H}, \psi, \mathcal{O}_n)$ is a weak probability space (X, Σ, μ) and a map $E : \mathcal{O}_n \to \Sigma$ satisfying both of the following conditions:

- 1 for each $P_i \in \mathcal{O}_n$, $\mu(E(P_i)) = \langle \psi | P_i | \psi \rangle$; and
- ② for each $P_i, P_j \in \mathcal{O}_n$, if $P_i \perp P_j$, then $E(P_i) \cap E(P_j) \in \Sigma$ and $\mu(E(P_i) \cap E(P_i)) = \langle \psi | P_i P_j | \psi \rangle = 0$.

Weak Representations

Definition

A weak (noncontextual) probability space is an ordered triple (X, Σ, μ) , where X is a nonempty set, $\Sigma \subseteq \wp(X)$ is nonempty, and $\mu : \Sigma \to Y \supseteq [0, 1]$.

Definition

A **weak hidden variable representation** for a simple quantum mechanical experiment $(\mathcal{H}, \psi, \mathcal{O}_n)$ is a weak probability space (X, Σ, μ) and a map $E : \mathcal{O}_n \to \Sigma$ satisfying both of the following conditions:

- 1 for each $P_i \in \mathcal{O}_n$, $\mu(E(P_i)) = \langle \psi | P_i | \psi \rangle$; and
- 2 for each $P_i, P_j \in \mathcal{O}_n$, if $P_i \perp P_j$, then $E(P_i) \cap E(P_j) \in \Sigma$ and $\mu(E(P_i) \cap E(P_i)) = \langle \psi | P_i P_j | \psi \rangle = 0$.

The Central Theorem

Theorem

No KS-witness $(\mathcal{H}, \psi, \mathcal{O}_n)$ has a weak hidden variable representation (X, Σ, μ, E) satisfying both of the following:

Weak Classicality (WC) if $Q \subseteq \mathcal{O}_n$ contains only mutually orthogonal operators spanning \mathcal{H} , then $(X, \Sigma_Q, \mu_{|\Sigma_Q})$ is a classical probability space, where $\Sigma_Q \subseteq \Sigma$ is the smallest $(\sigma$ -)algebra for X containing $\{E(P_i): P_i \in Q\}$; and

No Finite Null Cover (\neg FNC) there is no collection $B_1, \ldots, B_m \in \Sigma$ such that $\mu(B_i) = 0$ for all $i \in \{1, \ldots, m\}$ and $\bigcup_{i=1}^m B_i = X$.

The Central Theorem

Theorem

No KS-witness $(\mathcal{H}, \psi, \mathcal{O}_n)$ has a weak hidden variable representation (X, Σ, μ, E) satisfying both of the following: Weak Classicality (WC) if $Q \subseteq \mathcal{O}_n$ contains only mutually orthogonal operators spanning \mathcal{H} , then $(X, \Sigma_Q, \mu_{|\Sigma_Q})$ is a classical probability space, where $\Sigma_Q \subseteq \Sigma$ is the smallest $(\sigma$ -)algebra for X containing $\{E(P_i): P_i \in Q\}$; and

No Finite Null Cover (\neg FNC) there is no collection $B_1, \ldots, B_m \in \Sigma$ such that $\mu(B_i) = 0$ for all $i \in \{1, \ldots, m\}$ and $\bigcup_{i=1}^m B_i = X$.

The Central Theorem

Theorem

```
No KS-witness (\mathcal{H}, \psi, \mathcal{O}_n) has a weak hidden variable representation (X, \Sigma, \mu, E) satisfying both of the following:
```

Weak Classicality (WC) if $Q \subseteq \mathcal{O}_n$ contains only mutually orthogonal operators spanning \mathcal{H} , then $(X, \Sigma_Q, \mu_{|\Sigma_Q})$ is a classical probability space, where $\Sigma_Q \subseteq \Sigma$ is the smallest $(\sigma$ -)algebra for X containing $\{E(P_i): P_i \in Q\}$; and

No Finite Null Cover ($\neg FNC$) there is no collection $B_1, \ldots, B_m \in \Sigma$ such that $\mu(B_i) = 0$ for all $i \in \{1, \ldots, m\}$ and $\bigcup_{i=1}^m B_i = X$.

The Central Corollary

Corollary

No weak hidden variable theory—a noncontextual assignment of a weak hidden variable representation to each simple quantum mechanical experiment—can satisfy both WC and ¬FNC

Outline

- 1 Bell's Theorem à la Fine and Pitowsky
- 2 The KS and Our Theorem
- 3 Applications
- 4 Observations and Conclusions

Application: Generalized Probability Spaces (Suppes/Fine/Gudder)

Definition

A (σ -)additive class Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1 for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 for all disjoint $A, B \in \Sigma$, $A \cup B \in \Sigma$.

Definition

A generalized probability space is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)additive class for X and $\mu : \Sigma \to [0, 1]$ is such that

- **1** $\mu(X) = 1$; and
- 2 for all disjoint $A, B \in \Sigma$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Application: Negative Probability Spaces (Hartle/Kronz/et al.)

Definition

A (σ -)algebra Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1 for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 for all $A, B \in \Sigma$, $A \cup B \in \Sigma$.

Definition

A **negative probability space** is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)algebra for X and $\mu : \Sigma \to \mathbb{R}$ is such that

- **1** $\mu(X) = 1$; and
- ② for all disjoint $A, B \in \Sigma$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Application: Complex Probability Spaces (Youssef/Srinivasan/et al.)

Definition

A (σ -)algebra Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1 for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 for all $A, B \in \Sigma$, $A \cup B \in \Sigma$.

Definition

A **complex probability space** is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)algebra for X and $\mu : \Sigma \to \mathbb{C}$ is such that

- **1** $\mu(X) = 1$; and
- ② for all disjoint $A, B \in \Sigma$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Application: Quantum Measure Theory (Sorkin/Gudder)

Definition

A (σ -)algebra Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1 for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 if $A, B \in \Sigma$, then $A \cup B \in \Sigma$.

Definition

A **quantum measure space** is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)algebra for X and $\mu : \Sigma \to [0, 1]$ is such that

- **1** $\mu(X) = 1$; and
- 2 for any mutually disjoint $A, B, C \in \Sigma$, $\mu(A \cup B \cup C) = \mu(A \cup B) + \mu(A \cup C) + \mu(B \cup C) \mu(A) \mu(B) \mu(C)$.

Application: Upper (Lower) Probability Spaces (Suppes et al.)

Definition

A (σ -)algebra Σ for a set X is a nonempty subset of $\wp(X)$ such that:

- 1) for all $A \in \Sigma$, $X A \in \Sigma$; and
- 2 for all $A, B \in \Sigma$, $A \cup B \in \Sigma$.

Definition

An **upper (lower) probability space** is a triple (X, Σ, μ) , where Σ is a $(\sigma$ -)algebra for X and $\mu : \Sigma \to [0, 1]$ is such that

- **1** $\mu(X) = 1$; and
- 2 for all disjoint $A, B \in \Sigma$, $\mu(A \cup B) \leq (\geq) \mu(A) + \mu(B)$.

Application of Central Theorem

Theorem

Generalized probability spaces, negative probability spaces, complex probability spaces, quantum measure spaces, and upper (lower) probability spaces are all weak probability spaces.

Corollary

No KS-witness has a weak hidden variable representation with a generalized probability space, negative probability space, complex probability space, quantum measure space, or upper (lower) probability space that satisfies both WC and ¬FNC.

Application of Central Theorem

Theorem

Generalized probability spaces, negative probability spaces, complex probability spaces, quantum measure spaces, and upper (lower) probability spaces are all weak probability spaces.

Corollary

No KS-witness has a weak hidden variable representation with a generalized probability space, negative probability space, complex probability space, quantum measure space, or upper (lower) probability space that satisfies both WC and ¬FNC.

Outline

- 1 Bell's Theorem à la Fine and Pitowsky
- 2 The KS and Our Theorem
- 3 Applications
- 4 Observations and Conclusions

Pyrrhic Victory for Classical Logic?

- Nonclassical probability sometimes motivated by a desire to maintain the "classical logic" of noncontextuality.
- But a FNC would then require a finite disjunction of "negative sureties/falsities" to be a "surety/truth".
- How could the "probabilities" of such a model provide guidance for belief? Credences set by them can be Dutch booked.

Pyrrhic Victory for Classical Logic?

- Nonclassical probability sometimes motivated by a desire to maintain the "classical logic" of noncontextuality.
- But a FNC would then require a finite disjunction of "negative sureties/falsities" to be a "surety/truth".
- How could the "probabilities" of such a model provide guidance for belief? Credences set by them can be Dutch booked.

Pyrrhic Victory for Classical Logic?

- Nonclassical probability sometimes motivated by a desire to maintain the "classical logic" of noncontextuality.
- But a FNC would then require a finite disjunction of "negative sureties/falsities" to be a "surety/truth".
- How could the "probabilities" of such a model provide guidance for belief? Credences set by them can be Dutch booked.

Against Finite Null Covers

Definition

A **Dutch book** in a weak probability space (X, Σ, μ) is a collection of events $B_1, \ldots, B_m \in \Sigma$ along with numbers $s_1, \ldots, s_m \in \mathbb{R}$ such that for any $x \in X$,

$$\sum_{i=1}^m s_i(\chi_{B_i}(x) - \mu[B_i]) < 0$$

Theorem

If a weak probability space (X, Σ, μ) contains a finite null cover $\{B_1, \ldots, B_m\}$, then it contains a Dutch book $\{B_1, \ldots, B_m\}$ with any $s_i < 0$ for all i.

Against Finite Null Covers

Definition

A **Dutch book** in a weak probability space (X, Σ, μ) is a collection of events $B_1, \ldots, B_m \in \Sigma$ along with numbers $s_1, \ldots, s_m \in \mathbb{R}$ such that for any $x \in X$,

$$\sum_{i=1}^m s_i(\chi_{B_i}(x) - \mu[B_i]) < 0$$

Theorem

If a weak probability space (X, Σ, μ) contains a finite null cover $\{B_1, \ldots, B_m\}$, then it contains a Dutch book $\{B_1, \ldots, B_m\}$ with any $s_i < 0$ for all i.

Settleable Bets

Hartle (2004) and Gell-Mann and Hartle (2012) consider a related problem for negative probabilities:

 Only settleable bets, whose outcomes an agent is guaranteed to know, are legitimate.

However, each B_i in the null cover, and the whole collection, is settleable.

 This is despite the disjunction of some elements of the cover not being settleable.

Settleable Bets

Hartle (2004) and Gell-Mann and Hartle (2012) consider a related problem for negative probabilities:

 Only settleable bets, whose outcomes an agent is guaranteed to know, are legitimate.

However, each B_i in the null cover, and the whole collection, is settleable.

 This is despite the disjunction of some elements of the cover not being settleable.

- Only need "enough" value-definiteness to get a KS-witness; thus might apply to some models (e.g., modal interpretations) that reject general value-definiteness.
- Other nonclassical probability models?
- Any viable interpretation of a FNC?
- Hierarchy of no-go theorems?

- Only need "enough" value-definiteness to get a KS-witness; thus might apply to some models (e.g., modal interpretations) that reject *general* value-definiteness.
- Other nonclassical probability models?
- Any viable interpretation of a FNC?
- Hierarchy of no-go theorems?

- Only need "enough" value-definiteness to get a KS-witness; thus might apply to some models (e.g., modal interpretations) that reject *general* value-definiteness.
- Other nonclassical probability models?
- Any viable interpretation of a FNC?
- Hierarchy of no-go theorems?

- Only need "enough" value-definiteness to get a KS-witness; thus might apply to some models (e.g., modal interpretations) that reject *general* value-definiteness.
- Other nonclassical probability models?
- Any viable interpretation of a FNC?
- Hierarchy of no-go theorems?

Thanks!

For more information, see the full paper:

"On Noncontextual, Non-Kolmogorovian Hidden Variable Theories." *Foundations of Physics* 47.2 (2017): 294–315.

DOI:10.1007/s10701-017-0061-z

arXiv:1608.03518

Both SCF and BHF acknowledge the support of National Science Foundation Graduate Research Fellowships.

