Genetic bases of development

IIE 366: Developmental
Psychology
Greg Francis
Lecture 05

2.1 Mechanisms of Heredity

The Biology of Heredity Single Gene Inheritance Genetic Disorders

The first 22 pairs of chromosomes are autosomes (about the same size) The 23rd pair is the sex chromosomes Can vary in size

The Biology of Heredity

2.1 The Biology of Heredity

- Genotype is one's complete set of genes
- Phenotype is one's physical, behavioral, and psychological features
 - The expression of genes
 - Environmental influences

2.1 Single Gene Inheritance

- A gene is a group of DNA bases that provide biochmeical instructions for producing amino acids, proteins, and enzyms
- Alleles are different forms of genes

2.1 Single Gene Inheritance

- · Pairs of alleles can be either
 - homozygous (same allels in the pair of chromosomes)
 - heterozygous (different allels in the pair of chromosomes)
- Dominant allele: its chemical instructions are followed
- Recessive allele: its chemical instructions are ignored
- Incomplete dominance: one allele doesn't dominate the other completely

Sickle Cell Trait: An Example of Incomplete Dominance

2.1 Genetic Disorders: Inherited disorders

- Many disorders are triggered when a child inherits two recessive alleles
- Examples include cystic fibrosis, PKU, albinism, and Tay-sachs disease
- Most inherited disorders are very rare

2.1 Genetic Disorders: Inherited disorders

- Tay-sachs disease
 - No cure
 - Normal at birth
 - Deterioration of the central nervous system
 - Death by age 4
 - Absence of an enzyme called Hex A
 - -> leads to build up of GM2 in the brain

Tay-sachs disease European Jews: 1 in 300 births have the disorder More people carry one of the alleles European Jews: 1 in 30 Most non-Jewish Caucasians: 1 in 300 French-Canadians: 1 in 300 Irish: 1 in 41

2.1 Genetic Disorders: Abnormal number of chromosomes

- Some people are born with too many, too few, or damaged chromosomes
- People with Down Syndrome usually have an extra 21st chromosome

2.1 Genetic Disorders: Abnormal number of chromosomes

 A number of disorders (e.g., Turner's Syndrome, Klinefelter's Syndrome, XYY complement, XXX Syndrome) are caused by missing or extra sex chromosomes

2.2 Heredity, Environment, and Development

Behavioral Genetics
Paths From Genes to Behavior

2.2 Behavioral Genetics

- We need to be careful to remember that what we identify as behavioral characteristics do net necessarily correspond directly to genetic behaviors
 - · Genes deal with enzymes, proteins, and amino acids

2.2 Behavioral Genetics

- Some genes exhibit pleiotropy
 - A single gene is often related to several different behaviors or traits
- Albinos lack pigment in their skin and have a high frequency of crossed eyes

2.2 Behavioral Genetics

- Many behavioral genotypes reflect polygenic inheritance, which involves many genes
- This explains why there can be so many variations of a trait

2.2 Behavioral Genetics

- Behavioral geneticists rely upon twin studies and adoption studies
- Cognitive abilities, psychological disorders, substance abuse, and personality are all affected by heredity

2.2 Paths From Genes to Behavior

- The behavioral consequences of genetic instructions depend on the environment in which those instructions develop
- Heredity and environment interact dynamically throughout development.
- Genes can influence the kind of environment to which a child is exposed
- Environmental influences typically make children within a family different.

The Relation Between Genes and Environment Child's Genes Parent's Child's Phenotype Child's Phenotype

Next time

- Nature versus nurture
- Reaction range
- Families
- Social policy