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Cortical Dynamics of Lateral Inhibition: Metacontrast Masking 

Gregory Francis 
Purdue University 

The dynamic properties of a neural network model of visual perception, called the boundary contour 
system, explain characteristics of metacontrast visual masking. Computer simulations of the model, 
with a single set of parameters, demonstrate that it accounts for 9 key properties of metacontrast 
masking: Metacontrast masking is strongest at positive stimulus onset asynchronies (SOAs) ; decreas- 
ing target luminance changes the shape of the masking curve; increasing target duration weakens 
masking; masking effects weaken with spatial separation; increasing mask duration leads to stronger 
masking at shorter SOAs; masking strength depends on the amount and distribution of contour in 
the mask; a second mask can disinhibit the masking of the target; such disinhibition depends on the 
SOA of the 2 masks; and such disinhibition depends on the spatial separation of the 2 masks. No 
other theory provides a unified explanation of these data sets. Additionally, the model suggests a 
new analysis of data related to the SOA law and makes several testable predictions. 

A metacontrast masking display consists of a briefly flashed 
visual target (often a filled circle or a bar) followed by a mask- 
ing stimulus (a surrounding annulus or two flanking bars). In 
such a display the target is perceptually weaker (dimmer),  and 
in some cases participants fail to perceive the target at all. Per- 
haps most remarkable, in many cases the strongest masking 
effect occurs not with simultaneous onset of the target and mask, 
but at a positive stimulus onset asynchrony (SOA). The effect 
of SOA is surprising because if simple lateral inhibition pro- 
duced this type of masking, then the strongest interactions be- 
tween target and mask would occur with simultaneous onset. 
With a positive SOA, it would seem that the information about 
the target would have moved (to higher visual areas) beyond 
any influence of the mask. For this reason metacontrast masking 
is also often called backward masking, thus indicating the appar- 
ent ability of the mask to influence percepts of the target by 
going backward in time. When the mask precedes the target 
(forward, or paracontrast, masking) there is little masking. 

Currently, the most accepted account of metacontrast masking 
is the one proposed in various forms by Weisstein (1972);  Matin 
( 1975 ) ; Weisstein, Ozog, and Szoc ( 1975 ) ; and Breitmeyer and 
Ganz (1976). They suggested that interactions of t ransient-  
sustained inhibition explained many properties of dynamical 
vision, including metacontrast masking. Breitmeyer (1984) dis- 
cussed how the theory is consistent with an impressive amount 
of psychophysical and neurophysiological data on visual mask- 
ing. The theory proposes that fast-acting transient cells in visual 
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pathways inhibit slow-acting sustained cells. Because of differ- 
ences in time lags, the transient and sustained responses overlap 
best, thereby producing the strongest masking, when the mask 
follows the target with a positive SOA. Any other sequence 
produces weaker masking. 

Despite the theory's successes, it is not clear that the hypothe- 
sized inhibitory interactions fit harmoniously with theories of 
general visual perception. Indeed, except early in its develop- 
ment (Weisstein, 1972; Weisstein et al., 1975) and recently 
(O~men, 1993) there have been no attempts to quantify the 
theory and demonstrate that the mechanisms work as described. 

This article describes the dynamic characteristics of a neural 
network model of visual perception. The surprising finding is 
that transient-sustained inhibition is not necessary for the 
model to explain complicated data on metacontrast masking. 
The model, called the boundary contour system (BCS),  was 
originally built (Grossberg & Mingolla, 1985a, 1985b) to ac- 
count for spatial properties of visual perception. That the same 
model mechanisms explain properties of dynamic vision attest 
to the model 's validity. 

The model's ability to account for dynamic properties of 
visual perception has already been documented. Francis, 
Grossberg, and Mingolla (1994) and Francis (1996a) showed 
that the persistence of model neural signals had properties simi- 
lar to visual persistence measured in psychophysical experi- 
ments. Francis (1996b) demonstrated that the model replicated 
characteristics of temporal integration studies. Francis and 
Grossberg (1996b) linked many of these properties to threshold 
judgments of apparent motion by describing how signals in 
the BCS contribute to percepts of moving forms. Francis and 
Grossberg (1996a) showed that adaptation effects in the model 
accounted for some visual afterimages. 

Each of those studies, and the current study, show that the 
emergent behavior of the model qualitatively matches the behav- 
ior of participants in psychophysical experiments. They also 
demonstrate that a single model with relatively few mechanisms 
provides a unified explanation of a large set of data. With a 
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single set of equations and parameters, computer simulations of 
the model replicate nine key properties of metacontrast 
masking: 

1. SOA: When the mask follows the target, strongest masking 
occurs at an intermediate SOA. Masking is weaker when the 
mask precedes the target. Simultaneous presentation of the target 
and mask typically produces very little masking (e.g., Growney, 
Weisstein, & Cox, 1977). 

2. Target luminance: As the luminance of the target de- 
creases, the masking curve plotted against SOA changes shape. 
With fainter target luminance, strong masking occurs at shorter 
SOAs (Weisstein, 1972). 

3. Target duration: Increasing the duration of the target while 
keeping the duration of the mask fixed leads to better detection 
of the target (Schiller, 1965). 

4. Distance: Masking grows weaker with spatial separation 
of the target and mask (e.g., Growney et al., 1977). 

5. Mask duration: Masking strength increases with the dura- 
tion of the mask. The SOA resulting in strongest masking shifts 
to smaller values as the mask duration increases (Breitmeyer, 
1978). Strong masking occurs at a zero SOA if the mask dura- 
tion is longer than the target duration (Di Lollo, Bischof, & 
Dixon, 1993). 

6. Contour: Masking strength increases with amount of mask 
contour. For two masks of equal contour length, a mask with 
broken contours is more effective than a mask with a continuous 
contour (Sherrick & Dember, 1970). 

7. Disinhibition I, Two masks: Under some conditions, the 
presence of a second mask around the first can free the target 
from masking (e.g., Breitmeyer, Rudd, & Dunn, 1981). 

8. Disinhibition II, SOA: For disinhibition to occur, the sec- 
ond mask must precede the first (Breitmeyer et ai., 1981). 

9. Disinhibition III, Distance: For disinhibition to occur, the 
second mask must be very close to the first (Breitmeyer et al., 
1981 ). 

In addition to accounting for these psychophysical data, the 
model reconsiders the relative importance of SOA and ISI (inter- 
stimulus interval) in accounting for the strength of metacontrast 
masking. The model rejects the SOA law proposed by Kahne- 
man (1967) in favor of a predicted ISI law for certain stimulus 
conditions. The model also provides several other testable 
predictions. 

This research demonstrates that a few neural mechanisms can 
account for many general properties of metacontrast masking. 
The model uses three key characteristics: excitatory feedback, 
feedforward inhibition, and inhibitory feedback. Changes in the 
strength of these variables due to modifications in the display 
lead to a consistent explanation of the data mentioned above. 
The next section provides details of the model. 

of the model, and the following section describes the dynamic 
properties of the model. 

Boundary Contour System Architecture 

Figure 1 schematizes the model. On-center, off-surround cells, 
similar to those found near the retina or lateral geniculate, filter 
visual inputs. The unoriented cells feed into pairs of like-ori- 
ented simple cells that are sensitive to opposite contrast polari- 
ties. The simple cells send their rectified output signals to like- 
oriented complex cells, which become insensitive to direction 
of contrast. Complex cells activate hypercomplex cells through 
on-center, off-surround connections (first competitive stage), 
whose off-surround carries out an endstopping operation (Hu- 
bel & Wiesel, 1965; Orban, Kato, & Bishop, 1979a, 1979b). 
These interactions are gated by habituative chemical transmit- 
ters. The endstopped cells input to a competition across orienta- 
tion (second competitive stage) among higher order hypercom- 
plex cells. Their outputs identify the location and orientation of 
stimulus edges or boundaries. They feed into cooperative bipole 
cells that, in turn, generate feedback signals that excite spatially 
and orientationally consistent oriented patterns of activation and 
inhibit (spatial sharpening) inconsistent ones. Like the cells 
reported to exist in area V2 (Von der Heydt, Peterhans, & 
Baumgartner, 1984), model bipole cells require substantial ex- 
citatory input on each half of their bow-tie-shaped receptive 
field. In response to visual input, feedback among BCS bipole 
cells and hypercomplex cells helps to drive a cooperative-com- 
petitive decision process that completes the statistically most 
favored patterns and suppresses less favored patterns of activa- 
tion. Cooperating activations are said to resonate in the network. 

Grossberg and Mingolla (1985a, 1985b) designed the BCS 
architecture and its network interactions to account for spatial 
properties of visual perception. The network processes informa- 
tion necessary to locate oriented boundaries. Other visual sys- 
tems use the distribution of boundaries across many locations 
for object recognition (Grossberg & Mingolla, 1985b), filling 
in brightness, color, and depth percepts (Grossberg, 1994; 
Grossberg & Mingolla, 1985a; Grossberg & Todorovi6, 1988), 
and motion detection (Francis & Grossberg, 1996b). In many 
cases, boundary detection is a critical step toward processing 
visual images. An assumption of the current simulations is that 
displays that produce longer durations of boundary signals are 
brighter (more time for filling in) and recognized better (more 
time for later stages to determine detection or identification). 
With this assumption, it is possible to explain the psychophysi- 
cal metacontrast data with mechanisms necessary for processing 
spatial aspects of perception. 

Cort ical  Processing of  Boundary  Informat ion 

Grossberg and Mingolla ( 1985a, 1985b) introduced the BCS 
to model how the visual system detects and completes stimulus 
boundaries from retinal images. A complete account of this 
model and its relations to other parts of visual perception have 
been reviewed elsewhere (e.g., Grossberg, 1994) and is beyond 
the scope of this article. The next section describes the structure 

Boundary Contour System Dynamics 

Each cell in the BCS has its own local dynamics involving 
activation by inputs and passive decay (on the order of simulated 
milliseconds). However, the excitatory feedback loops dominate 
the temporal characteristics of the BCS. When inputs feed into 
the BCS, they trigger reverberatory circuits that are not easily 
stopped. Simulations in Francis et al. (1994) demonstrate that, 
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Figure 1. Schematic diagram of the boundary contour system. Cooperative (solid lines) and competitive 
(dashed lines) interactions embedded in a feedback network process visual information. LGN = lateral 
geniculate nucleus. 

if left unchecked, these reverberations can last for hundreds of 
simulated milliseconds. 

At stimulus offset, cell activities within the feedback loop 
continue to resonate solely because of the activity already in 
the loop. However, the spatial structure of the bipole cells' re- 
ceptive fields limits the persistence of activity. A bipole cell 
requires excitatory inputs on both sides of its receptive field; 
thus, when the visual inputs disappear, boundaries in the middle 
of a contour receive strong bipole feedback, but boundaries near 
the end receive no feedback (Figure 2A). At stimulus offset the 
cell activities coding boundaries at the end of a contour passively 
decay away (Figure 2B ). This exposes a new cell as the contour 
end, which stops receiving bipole feedback and passively decays 
away as well (Figure 2C). This erosion process continues from 
the contour ends to the middle of the contour, as schematized 
in Figures 2A-C.  Moreover, as more boundary signals drop out 
of the feedback loop, the loop contains less activity, thereby 
weakening the excitatory feedback signals. As a result, erosion 

speeds up over time until finally the feedback loop no longer 
contains enough activity to support itself and the resonance 
collapses. 

Figure 3 summarizes a simulation of boundary signal erosion. 
Figure 3A shows the stimulus presented to the system, a bright 
square on a dark background. Figures 3B-D show the boundary 
signal responses to the luminance edges of the stimulus at suc- 
cessive moments beyond stimulus offset. The figures show the 
erosion of boundary signals from the comers of the stimulus to 
the middles of the contours. 

Erosion occurs slowly relative to the duration of a brief stimu- 
lus and, if unchecked, could lead to undesirably long boundary 
persistence after stimulus offset and thus image smearing in 
response to image motion. Image smearing does occur for very 
fast moving stimuli in some conditions (e.g., Chen, Bedell, & 
O~gmen, 1995), and the smear generally produces a trail that 
narrows to a point, which is consistent with the erosion hypothe- 
sis. However, such smearing is unusual, so the problem for the 
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tion, is more significant. Lateral inhibition from edges of a 
nearby stimulus can also speed the erosion of target boundaries. 
The next section shows that interactions between excitatory 
feedback and lateral inhibition account for many properties of 
metacontrast masking. 

Figure 2. Schematic diagrams of the erosion process at one end of a 
contour. In A, excitatory feedback from bipole cells strengthens activities 
along the interior of a contour. At stimulus offset in B, the activity of a 
boundary cell that does not receive excitatory feedback decays away. 
As boundaries decay away in C, additional bipole cells stop sending 
excitatory feedback, which allows another boundary cell to decay away. 
This process continues from contour ends to the middle. 

BCS is to accelerate boundary erosion in response to rapidly 
changing imagery. 

Francis et al. (1994) identified two mechanisms embedded 
in the BCS design that reset resonating patterns. One mechanism 
produces signals at stimulus offset that actively inhibit the per- 
sisting activations. Habituation of chemical transmitters (boxes 
in Figure 1) shifts the balance of activity among competing 
pathways in the second competitive stage. This shift creates 
rebounds of activity in nonstimulated pathways at the offset of 
a stimulus. Within the BCS, these rebounds inhibit the persisting 
activations. Francis and Grossberg (1996a) showed that the 
rebound signals correspond to percepts of orientational 
afterimages. 

Although the habituating transmitters play a role in the discus- 
sion of disinhibition from a second mask (see Disinhibition IlL" 
Distance) and for a prediction described in Habituation, for 
most of the present analysis a second mechanism, lateral inhibi- 

Simulations 

The simulations were consistent with earlier investigations of 
the model. Each simulated display consisted of a target bar 1 
× 36 pixels centered on a 40 x 40 image plane. The mask 
consisted of two flanking bars of equal size. Unless otherwise 
stated, the simulated stimuli were bright on a dark (10 -6 fL)  
background and were separated by four pixel spaces. Because 
of the severe computational requirements imposed by the simu- 
lations, the current simulations often ~tid not use the same stimuli 
as in corresponding psychophysical experiments. The model 
consisted of several thousand differential equations that were 
simultaneously integrated through time. These calculations 
pushed a high-powered workstation to its limits. Generating a 
set of simulated data often took a few days, and, in one extreme 
case, calculating a single data point required several weeks. 
The computational techniques necessary to achieve this level of 
performance forced the spatial constraints on simulated stimuli. 
See the Appendix for details. 

Computational constraints also precluded a search of the pa- 
rameter space for a best fit of the simulated results to psycho- 
physical data. Instead, the current simulations used one set of 
parameters across a variety of simulated displays. Although this 
sometimes results in a poor quantitative fit to some data sets, it 
demonstrates that the model's behavior is consistent with a 
variety of metacontrast effects. Computational constraints also 
forced the model to greatly simplify effects at the retinal and 
lateral geniculate nuclei (LGN) levels. The current simulations 
include a simple on-center, off-surround interaction that com- 
presses the response of cell activities. Off-center, on-surround 
interactions are not modeled, and these simplifications often 
force simulated luminance values to be different from experi- 
mental luminance values. 

Like many other models of dynamic vision (e.g., Busey & 
Loftus, 1994; Weisstein, 1972; Wilson & Cowan, 1973), the 
current simulations assume that the quality of the target's percept 
is related to the duration of model signals. The current simula- 
tions assume that increasing the duration of BCS signals pro- 
duces brighter percepts that are more easily recognized or identi- 
fied. This measure undoubtedly breaks down at very short or 
very long durations in which corresponding psychophysical 
studies show floor or ceiling effects. Fortunately, most studies 
explicitly set display parameters to avoid such effects, and their 
influence is noted when necessary. With this measure, it is not 
possible to directly compare simulated durations across experi- 
mental conditions. A 20-simulated-ms change in boundary dura- 
tion for one experiment may indicate very strong masking, 
whereas the same change may indicate weak masking in another 
experiment. The effect of the change depends on the correspond- 
ing experimental measure of masking, luminance of the stimuli, 
size of the stimuli, attention of the participants, and other experi- 
mental conditions. For example, if the target stimulus is close 
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Figure 3. A demonstration of boundary erosion. Solid squares indicate positive activity of boundary cells. 
The smaller dots mark pixel locations. In A, stimulus input to the network, a bright square on a dark 
background; in B, boundary response to the square shortly after the input returns to the background level; 
in C, boundary signals start to erode from the corners of the square toward the middle of the contours; and 
in D, boundary erosion is almost complete. From "Cortical Dynamics of Feature Binding and Reset: Control 
of Visual Persistence," by G. Francis, S. Grossberg, and E. Mingolla, 1994, Vision Research, 34, p. 1094. 
Copyright 1994 by Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 IGB, United 
Kingdom. Adapted with permission. 

to the luminance threshold for detection, a decrease in boundary 
duration of 20 simulated ms might indicate very strong masking. 
On the other hand, in a form-recognition task using bright stim- 
uli, a change of 20 simulated ms may indicate weak masking. 
The current model simulations do not quantify the strength of 
masking, but indicate the direction and relative strength of mask- 
ing within an experimental condition. 

In the following simulations, three characteristics of the 
model affect the total duration of boundary signals: the strength 
of resonance generated by excitatory feedback, the strength of 
feedforward inhibition, and the strength of feedback inhibition. 
The following sections describe how psychophysical studies of 
metacontrast masking support the existence of these model 
components. 

Excitatory Feedback 

Strong positive feedback in the BCS allows neural signals to 
resonate long after the physical stimulus has disappeared. These 
signals do gradually fade away (through erosion as described 
earlier), at an accelerated rate. The strength of the excitatory 
feedback signals generated by a target, when inhibition from a 

masking stimulus arrives, determines the effectiveness of the 
mask. 

Figure 4 shows the results of three simulations that vary only 
in SOA. Figure 4A shows the creation and erosion of one row 
of boundary signals produced by a brief (15 ms, 30 fL)  bar in 
a visual display with no subsequent stimulus. Brighter regions 
indicate higher cell activities, and the contour lines mark curves 
of equal activity. At stimulus onset (far left), the boundaries 
rapidly grow in strength and grow stronger as the excitatory 
bipole feedback develops. Shortly after stimulus offset, the 
boundaries drop in strength because of the lack of feedforward 
input from the visual image, and the boundaries erode from the 
contour ends toward the middle, as described earlier. The speed- 
ing up of erosion is evidenced by the inward bend to the outer 
contour line. A constant rate of erosion would produce a straight 
line. 

Figure 4B shows the erosion of the same contour when onset 
of a pair of brief (15 ms, 30 fL)  masking bars on either side 
of the target (4 pixel spaces of separation) follows the onset of 
the target by 5 simulated ms (marked by arrow). The activities 
of cells responding to the second stimulus have little effect 
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because the target simultaneously receives inhibition from the 
mask and strong excitatory feedback from higher levels. Be- 
cause the inhibition from the mask depends on the visual input 
and not on the activities in the feedback loop, it is short-lived, 
lasting only slightly longer than the duration of the mask. Thus, 
erosion of target boundaries continues without further influence 
from feedforward lateral inhibition. 

Figure 4C shows the erosion of the target contour when the 
mask follows an SOA of 80 simulated ms (marked by arrow). 
After the target offset, the boundaries of the target weaken and 
erode such that when the inhibition from the mask arrives, it 
has a much greater effect on the remaining boundaries. This 
inhibition causes the remaining boundaries to erode so quickly 
that they disappear sooner than the case when the inhibition 
appeared after a short SOA (Figure 4B ). The following sections 
describe experiments that vary the strength and duration of ex- 
citatory feedback signals in the model. 

Stimulus onset asynchrony. One of the primary properties 
of metacontrast masking is that the strongest masking effects 
occur at positive SOAs between the target and the mask. With 
zero or negative SOAs, there is little effect of the mask. The 
range of SOAs for maximal masking tends to be around 50-  
100 ms, but it varies for participants and stimuli. Figure 5A 
shows the effects of metacontrast masking for one participant 
in a study by Growney et al. (1977). In this study, participants 
observed a brief target (a 16-ms vertical line) with a mask 
(flanking 16-ms vertical lines) at varying SOAs (At)  and vary- 
ing edge-to-edge distances. All stimuli were presented at 55 f L 
on a background of 5 ft-lam. Participants judged the target's 
brightness by setting a filter to a standard (of equal duration 
and luminance) to produce equivalent brightness percepts; a 
stronger filter indicated stronger masking. Each curve in Figure 
5A shows the metacontrast function for a specific edge-to-edge 
separation. Within each curve, the strongest masking occurred 
for an SOA of about 90 ms. 

The model explains the effect of SOA by considering how 
the strength and duration of inhibitory signals from the mask 
interact with the strength and duration of excitatory feedback 
signals generated by the target. To replicate the properties found 
by Growney et al. (1977), the simulated target and mask were 
presented for 15 ms at 30 fL  on a dark background. The stimuli 
were separated by 4 - 8  pixel spaces, and each pixel space corre- 
sponded to 0.15 visual degrees. Figure 5B shows simulation 
results measuring the duration of the target's boundary signals 
as a function of SOA and spatial separation from the mask. 
Without a mask, the boundaries of the target last 135 ms. With 
the mask the duration changes, and the biggest change occurs 
for an SOA of 80 ms. The results are qualitatively similar to the 

Figure 4. Density graphs of boundary signal erosion in a simulation. 
Target onset occurs at time zero. Brighter regions indicate stronger 
boundary cell activity. The contours mark out equal-value curves (arrows 
mark the onset of the mask): with no masking stimulus (A); with a 
masking stimulus at a stimulus onset asynchrony (SOA) of 5 simulated 
ms (B; boundary duration is relatively unaffected); and with a masking 
stimulus at an SOA of 80 simulated ms (C; boundary duration is 
shortened). 
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Figure 5. Masking is strongest for intermediate positive stimulus onset 
asynchronies (At). Paracontrast masking is weak. Masking falls off 
with distance. In A, Growney et al.'s (1977) psychophysical data. From 
"Metacontrast as a Function of Spatial Separation With Narrow Line 
Targets and Masks," by R. Growney, N. Weisstein, and S. Cox, 1977, 
Vision Research, 17, p. 1207. Copyright 1977 by Elsevier Science Ltd, 
The Boulevard, Langford Lane, Kidlington OX5 1GB, United Kingdom. 
Adapted with permission. In B, masking effects on duration of target 
signals in the model. Shorter durations correspond to stronger masking. 
Note that the y-axis runs in reverse. RG = participant's initials. 

data in Figure 5A reported by Growney etal. ( 1977 ). Note that 
the y-axis runs in reverse because shorter boundary durations 
correspond to dimmer percepts. 

Figure 5B shows that the model also has weak paracontrast 
masking (negative SOAs). This characteristic exists within the 
model because the feedforward inhibitory signals depend on the 
physical presence of the mask. When the mask precedes the 
target, the inhibition builds in strength and decays before genera- 
tion of the target boundaries. As a result, the target signals 
remain relatively uninhibited, and paracontrast masking is weak. 
The weak paracontrast masking effects observed in Figure 5B 
occur because the inhibition from the mask can briefly delay 
the target boundaries from crossing a fixed threshold. Thus, the 
total duration of above threshold target signals is slightly shorter 

when the mask precedes the target. This is not a strong effect 
because the excitatory signals produced by the target quickly 
overcome the inhibitory signals of the mask. 

Target luminance. Weisstein (1972) varied the luminance 
of a target (filled circle) while fixing the mask (annulus) lumi- 
nance at 16 fL. The target to mask luminance ratios could be 
1.0, 0.5, 0.2, 0.0125, or 0.06125. Both stimuli were presented 
for 16 ms. Participants rated the brightness of each target against 
the percept of an unmasked stimulus of equal size and lumi- 
nance. Figure 6A shows the resulting masking functions, for 
one participant, as SOA (At)  varied. The key finding is that the 
shape of the masking function changed as target luminance 
decreased. In particular, strong masking occurred sooner for 
dimmer targets, and masking occurred at zero and negative 
SOAs for the dimmest targets. Two other participants showed 
qualitatively similar characteristics. 

The model accounts for these findings because fainter targets 
generate weaker target boundaries and weaker excitatory feed- 
back. As a result, the inhibition sent by the mask at even a short 
SOA is sufficient to shorten the duration of target signals. In 
the simulations, the target and mask durations were 16 ms, 
and the mask luminance was 16 fL. To produce the qualitative 
properties found by Weisstein (1972), it was necessary to re- 
duce the luminance values of the simulated target to very small 
values (Figure 6B includes the target-mask ratios) because the 
on-center, off-surround cells in the model saturated at even small 
luminance values. A more accurate model of neural and LGN 
processing would help reduce the discrepancies between simu- 
lated and experimental stimulus values. 

Because the data measured the relative strength of masking, 
the appropriate simulation measure is the change in boundary 
duration. Figure 6B plots changes in boundary duration from 
a no-mask condition. The model captures the key qualitative 
properties of the data. Decreasing the target luminance allows 
masking to occur for smaller and negative SOAs, and the strong- 
est masking occurs for smaller SOAs as target luminance drops. 

Target duration. Schiller (1965) varied target duration from 
5-13 ms while fixing the mask duration at 100 ms. In this study 
the target was a black disk (reflectance of 9%) on a bright 
background (reflectance of 90%) that appeared in one of four 
locations on the visual display. The mask consisted of four 
annuli, of the same reflectance as the target, that surrounded the 
possible locations of the target. The participant's task was to 
identify the location of the target. Figure 7A plots the percentage 
of correct detections as a function of the ISI between target 
offset and mask onset. Separate curves are for fixed target dura- 
tions. Detection percentages below 100 indicate metacontrast 
masking. The main finding is that performance improved as the 
duration of the target increases. 

These results are consistent with the model hypothesis that 
the quality of the visual percept depends on the duration of 
boundary signals. Increasing the duration of the target increases 
the total amount of time the boundaries are present, which 
should lead to more accurate responses. In the simulations, the 
target was a bright ( 1 fL)  bar of variable duration on a dark 
background, and the mask consisted of two flanking bars of 
the same luminance presented for 100 ms. Figure 7B plots the 
duration of boundaries from simulations that used the same 
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ratios (numbers above each curve), masking occurs for short stimulus onset asynchronies (At) and for 
paracontrast conditions. In A, Weisstein's (1972) psychophysical data. From "Metacontrast," by N. 
Weisstein, 1972, in D. Jameson and L. Hurvich (Eds.), Handbook of Sensory Physiology: Vol. 7. Visual 
Psychophysics (p. 263), Berlin, Germany: Springer-Verlag. Copyright 1972 by Springer-Verlag. Adapted 
with permission, In B, change in target boundary signal duration. Larger negative changes correspond to 
larger drops in brightness. JP = participant's initials, 

target durations as in Schiller 's (1965) study. The results agree 
with the data. Increasing the duration of  the target for a fixed 
ISI leads to longer durations of the boundaries, which implies 
better performance. As the ISI increases, boundary duration 
increases for each target duration. This latter result occurs, rather 
than a bow-shaped relationship, because the mask is of a long 
duration (100 ms) ,  which leads to monotonic metacontrast 
masking functions, as described below. The quantitative fit of  

the model to the data is better if one assumes that there is a 
floor effect when the boundary duration is below 70 ms and a 
ceiling effect if  the boundary duration is above 100 ms. 

Feedforward Inhibition 

This section considers a number of  masking studies that vary 
the overall strength of feedforward inhibition. Any increase in 
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Figure 7. Increasing target duration produces better detection of a 
target in a metacontrast display. In A, Schiller's (1965 ) psychophysical 
data. From "Metacontrast Interference as Determined by a Method of 
Comparisons," by P. Schiller, 1965, Perceptual and Motor Skills, 20, 
p. 282. Copyright 1965 by Southern Universities Press. Adapted with 
permission. In B, target boundary durations from model simulations. 
Longer durations correspond to better detection. ISI = interstimulus 
interval. 

the overall strength of inhibition leads to stronger masking 
effects. 

Distance. The data in Figure 5A from Growney et al. 
(1977) show that increasing the edge-to-edge separation of the 
target and mask produces weaker metacontrast masking. Mask- 
ing effects in this study disappeared by three degrees of separa- 
tion. In the model the strength of feedforward lateral inhibition 
in the first competitive stage weakens with distance. With weaker 
inhibitory signals, the target signals last for a longer length of 
time. Thus, increasing separation between the target and the 

mask results in weaker masking. Figure 5B shows that the model 
effects are qualitatively the same as the data in Figure 5A. 

Mask duration. Increasing the duration of the masking stim- 
ulus produces stronger metacontrast masking. This finding is 
consistent with the model because longer lasting inhibition leads 
to faster erosion of target boundaries and shorter total duration 
of target boundaries. Two psychophysical studies support the 
properties of the model. 

Breitmeyer (1978) showed that increasing the mask duration 
influenced the shape of the metacontrast curve. Figure 8A shows 
metacontrast masking curves, for 1 participant, for different 
mask durations. The target was a 16-ms disk, and the mask was 
a surrounding annulus of varying duration. Both stimuli were 
drawn with dark ink on a bright background of 20 fL. Partici- 
pants judged masking effects by matching the brightness of the 
target to a patch from a set of standard stimuli. Figure 8A shows 
two properties. First, masking effects grow stronger as mask 
duration increases. Second, the shape of the metacontrast mask- 
ing function becomes closer to monotonic as mask duration 
increases. 

The model also shows these trends, although there are quanti- 
tative differences. As the duration of the mask increases, so does 
the duration of the feedforward inhibitory signals sent from the 
mask to the target boundaries. This longer lasting inhibition 
speeds the erosion of target boundaries and shortens the overall 
duration of target boundaries. Thus, longer duration masks pro- 
duce stronger metacontrast. Moreover, even at a short SOA, a 
long-duration mask inhibits the target's boundaries when they 
are strong as well as weak. 

In the simulations, the target and mask were 30 f L bars on 
a dark background. The target was presented for 15 ms, and the 
mask duration varied from 1 - 128 ms in multiples of two. Figure 
8B plots the duration of target boundary signals as a function 
of SOA and mask duration. Shorter target boundary durations 
correspond to stronger masking (the y-axis runs in reverse). 
The simulated results capture the key qualitative properties of 
Breitmeyer's (1978) data: As mask duration increases, masking 
strength increases and strong masking occurs at shorter SOAs. 

In a related study, Di Lollo et al. (1993) showed that strong 
masking can occur at a zero SOA, if the mask duration is suffi- 
ciently long. Figure 9A shows psychophysical data for 2 partici- 
pants. In this study, participants identified which edge of a (1 
ms, 0.0681 cd-#s) target outline square had a missing piece. 
The mask was a surrounding outline square of equal brightness, 
with center pieces cut out (see Figure 9A) and was turned on 
simultaneously with the target. The mask duration was longer 
than the target duration by 0-160 ms. Percentage of correct 
identifications below 100 indicated masking effects. As Figure 
9A demonstrates, performance worsened as the duration of the 
masking stimulus increased. 

The model's explanation of this data is simple. When the 
target is present, its boundary signals receive two sources of 
excitation: from the target and from excitatory feedback. As a 
result, the mask's inhibition during simultaneous presentation 
with the target has little effect on the target's boundaries. When 
the target vanishes, its boundaries lose a source of excitation and 
start to erode. As mask duration increases, the erosion process is 
inhibited for a longer period of time, so the total duration of target 



CORTICAL DYNAMICS OF METACONTRAST 581 

A 10 

• 8 

~ 6 
e -  

~ 4 

BB 

2 

0 

Mask Duration (ms) 
- -o -1  

/ , . - "  "- - , - 8  
~" ,~ ~ , " ~  ---n-- 16 

t 7 ^ . "  , .  " - -  ~ 

I I I 

40 80 120 
Stimulus Onset Asynehrony (ms) 

B 100 

110 
C 
0 

Q 
120 

"10 
t-- 

O 

130 

Mask Duration (ms) 

I I I 

0 40 80 120 
Stimulus Onset Asynchrony (ms) 

Figure 8. The shape of the masking curve depends on the duration of the mask. As the mask duration 
increases, stronger masking occurs at shorter stimulus onset asynchronies. In A, Breitmeyer's (1978) psycho- 
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signals decreases. In the simulations, the target was 30 f L  and 
presented for 15 ms on a dark background. The mask was of  
equal luminance and presented for an additional 5 -145  ms 
beyond the offset of  the target. Figure 9B plots the duration of 
target boundary signals, with longer target boundary durations 
corresponding to higher percentages correct. 

In both simulations, there are quantitative differences between 
the psychophysical and simulated data. Notably, the model re- 
quires substantially longer mask durations to produce monotone 
masking curves in Figure 8, and the model reaches a ceiling 
effect of  mask duration sooner than the psychophysical data in 
Figure 9. Accounting for these differences requires elaborated 
simulations that consider the changes in stimulus type and partic- 

ipant task with greater detail. Despite the differences, the overall 
influence of  increasing mask duration is the same for both stud- 
ies and simulations. 

Contour. Sherrick and Dember (1970) demonstrated that 
the amount and spatial layout of  mask contour affected masking 
strength. The target in their display was a brief ( 15 ms) black 
disk that appeared in one of  two locations. Around each possible 
location a black masking stimulus (55 ms, ISI = 0) was also 
flashed. The participant's task was to identify the location of  
the target. The masks varied in two ways. A continuous mask 
was an annulus that had a single section removed. A distributed 
mask was an annulus with an equivalent amount of the contour 
removed but taken in several smaller sections rather than in one 
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Figure 9. Masking effects at zero stimulus onset asynchrony (SOA) 
as mask duration varies. Strong masking does occur at zero SOA if the 
mask is presented beyond target offset for a long-enough duration. In 
A, Di Lollo et al.'s (1993 ) psychophysical data. From "Stimulus-Onset 
Asynchrony Is Not Necessary for Motion Perception or Metacontrast 
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Adapted with permission. In B, target boundary durations from model 
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piece. The experiment also varied the amount  of mask contour  
for both types of  masks. Figure 10A plots the percentage of  
correct identifications, where less than 100 indicates masking. 
There are two main results f rom this study. First, masking de- 
pended on the amount  of contour in the mask. Second, when 
two masks had equal contour, the distributed contour was more 
effective than the continuous contour. Gilden, MacDonald,  and 
Lasaga (1988)  found similar effects of  contour amount  with 
different stimuli across a broader  range of ISis. 

Figure 10B plots simulation results that account for this find- 
ing. In the simulations, the target was a br ief  (15 ms)  bright 
bar  ( 1 f L )  on a dark background. The mask consisted of a pair 
of  flanking bars (55 ms, ! f L )  presented after an ISI of zero. 
For the continuous mask, pixels at either end of each mask bar 
were set to the background luminance.  For the distributed mask, 
pixels centered at one quarter and three quarters of the length 
of  each mask bar were set to the background luminance. The 
target and mask stimuli were separated by 5 pixel spaces. Perfor- 
mance correct depends on the duration of target signals, so 
Figure 10B plots the duration of  target signals against percent- 
age of contour  in the mask. The simulated results capture the 
two properties of  the data: Masking increases with percentage 
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Figure 10. Masking effects grow stronger as percentage of masking 
contour increases. For masks with equal contour percentages, masking 
is stronger when the contour is distributed rather than continuously 
aligned. In A, psychophysical data is redrawn from Sherrick and Dember 
(1970). From "Completeness and Spatial Distribution of Mask Con- 
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Dember, 1970, Journal of Experimental Psychology, 84, p. 180. Copy- 
right 1970 by the American Psychological Association. Adapted with 
permission of the author. In B, target boundary durations from model 
simulations. Longer durations correspond to better detection. 
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of contour, and the distributed contour provides stronger mask- 
ing than the continuous contour. 

The finding that masking strength depends on the amount of 
contour in the mask reflects the model property that the inhibi- 
tion underlying metacontrast masking is generated by cells sensi- 
tive to mask contours. More contour leads to more cells re- 
sponding and more inhibition. The finding that a distributed 
mask is more effective than a continuous mask of equal contour 
percentage reflects an interaction between the erosion process 
of the target stimulus and inhibition from the mask. As described 
earlier, the target boundary signals do not disappear uniformly 
but erode from contour ends to the contour middle. Also as 
described earlier, the inhibition from the mask is less effective 
if target boundaries have strong excitatory feedback supporting 
them. In the case of a continuous mask contour, the inhibitory 
signals generated by the mask are lumped together at the middle 
of the target contour. But the middle of the target contour re- 
ceives the strongest excitatory feedback and so remains rela- 
tively unaffected by the mask. A distributed mask of the same 
contour percentage generates inhibition at the ends of the target 
contour. Because the end of the target contour receives weaker 
excitatory feedback, the inhibition has a strong effect and speeds 
the overall erosion of the target signals. Thus, the results in 
Figure 10 support the role of both excitatory feedback and 
lateral inhibition from contour-detecting cells in accounting for 
metacontrast masking. 

It may be significant that the simulated stimuli differ substan- 
tially from the experimental stimuli. The differences may partly 
explain the discrepancies between experimental and simulated 
masking with the distributed mask. However, the model predicts 
that the main effect of distribution is robust enough to exist in 
bar stimuli as well as in the disk-annulus stimuli used by Sher- 
rick and Dember (1970). 

Inhibitory Feedback  

Although excitatory feedback causes persisting responses, in- 
hibitory feedback has different influences on persisting re- 
sponses and metacontrast masking. The following sections dem- 
onstrate that inhibitory feedback in the model accounts for prop- 
erties of masking disinhibition. 

Disinhibition I: Two masks. Given that the study of Sherrick 
and Dember (1970) showed that increasing the density of mask 
luminance edges produced stronger masking, it might be reason- 
able to suspect that if a display contained two masks, it would 
more strongly affect the target than a display with only one 
mask. A surprising result is that in some displays two masks 
result in weaker masking. 

Figure 11A shows data from a study by Breitmeyer et al. 
(1981). The display consisted of a black disk target, T, pre- 
sented for 15 ms on a bright background of 30 cd/m 2, a black 
annulus mask surrounding the disk, M~, of equal duration; and 
a second black annulus mask, M2, also of equal duration, that 
surrounded M~. In an initial experiment, T and M2 were pre- 
sented simultaneously and followed by M~. Participants judged 
T by making brightness matches to a set of grey patches num- 
bered 1-10. The numerical difference between ratings of T with 
and without the mask or masks was taken as the strength of 

masking. Breitmeyer et al. compared masking effects with and 
without M2 and calculated the difference as an indication of 
disinhibitory effects. Figure 11A shows, for 1 participant, that 
the presence of M2 reduced the strength of masking. The top 
curve with solid icons plots the masking magnitude against SOA 
for T and Ml alone and shows the typical inverted-U shape. The 
dashed line with open icons plots the masking magnitude with 
T, M~, and M2. The display with two masks has weaker masking. 
The bottom curve with cross icons plots the difference of the 
two masking curves and shows the strength of disinhibition. 

The model's explanation of disinhibition requires understand- 
ing the role of inhibitory feedback in the BCS. Figure 1 refers 
to pathways of inhibitory feedback as spatial sharpening. In 
masking conditions, inhibitory feedback from the mask shortens 
the duration of persisting target boundaries. Feedback inhibition 
from a second mask around the first can weaken this feedback 
inhibition and thereby disinhibit the target. 

For the simulations, the target and masks were presented for 
15 ms at a luminance of 30 fL. The target and first mask were 
separated by 3 pixels, whereas the first and second mask (if 
present) were separated by 1 pixel. The target and second mask 
were presented simultaneously and followed by the first mask 
after a variable SOA. The top curves in Figure l i B  plot the 
change in boundary signal duration of the target from a no- 
mask condition. The solid icons plot masking strength (change 
in target boundary duration) as a function of SOA when the 
display includes only the first mask. The open icons plot masking 
strength when the display includes both the first and second 
mask. The × icons plot the difference in target boundary dura- 
tion for the two cases. In all cases the simulation results qualita- 
tively match the data. The simulation results even capture the 
finding that the strongest disinhibition occurs for an intermediate 
SOA. 

Disinhibition H: Stimulus onset asynchrony. With the same 
stimulus setup, Breitmeyer et al. (1981) showed that disinhibi- 
tory effects depend on the timing of the masks. They observed 
that disinhibition was strongest when the second mask, M2, 
preceded the normal metacontrast mask, M~. Figure 12A shows 
data from a study in which the SOA between Ml and T was 
fixed at 50 ms, whereas the SOA between T and M2 varied. The 
amount of disinhibition dropped quickly as M~ and M2 were 
presented simultaneously and went to zero when M2 followed 
Mi. 

This result is consistent with the role of feedback inhibition 
in accounting for disinhibition. Because the inhibition is recur- 
rent, the stimulus that first establishes itself in the network has 
an advantage over the following stimulus. Thus, when the second 
mask follows the first, inhibitory feedback from the first mask 
prevents the second mask from sending reciprocal inhibition to 
the first mask. This is a type of winner-take-aU network in which 
the winner, once it is established, has an advantage over new 
challengers. 

The simulations used the same display parameters as before, 
but fixed the SOA between the target and Mj to be 60 ms. 
Figure 12B plots the disinhibition magnitude (recovery in target 
boundary duration) for variations in the onset of the target and 
M2. Like the data, disinhibition effects drop dramatically when 
MI and M2 are simultaneously onset, and M2 provides additional 
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Figure ll. Disinhibition effects with the presence of a second mask. Filled circles show the standard 
metacontrast masking curve for a target (T) and a mask (MI). Open circles show that the presence of a 
second mask (M2) results in less masking. The ×s show the disinhibition effect. In A, Breitmeyer et al.'s 
( 1981 ) psychophysical data. From "Metacontrast Investigations of Sustained-Transient Channel Inhibitory 
Interactions," by B. Breitmeyer, M. Rudd, and K. Dunn, 1981, Journal of Experimental Psychology: Human 
Perception and Performance, 7, p. 773. Copyright 1981 by the American Psychological Association. Adapted 
with permission of the author. In B, simulated masking magnitude measured as changes in target boundary 
durations from a no-mask condition. BB = participant's initials. 

masking (negative disinhibition) when M2 follows M~. Although 
the latter effect is weaker in the data than predicted by the 
model, it existed for all 3 participants in the Breitmeyer et al. 
(1981) study. 

The model fails to account for one important property of these 
studies. Breitmeyer et al. (1981) also measured the masking 
influence of  M2 on M1. They found that when M2 blocked the 
inhibition produced by M~, it did not mask the percept of  Mj.  
In corresponding model simulations, the presence of/142 does 
shorten the boundaries of  M~, contrary to the data. The model 
may be able to account for this finding with a different set of  

parameters, but further studies (both psychophysical and simu- 
lated) are necessary to sort out these details. For the model to 
account for this finding, M2 would need to more strongly weaken 
the Mt inhibitory feedback than the MI self-excitatory feedback. 

Disinhibition I11: Distance. Finally, Breitmeyer et al. 
(1981) showed that disinhibition occurs over a spatial range 
that is more narrow than the spatial range of  metacontrast mask- 
ing. They varied the stimulus display in two ways. First, they 
presented M2 continuously throughout the display. They made 
this modification because a long-duration second mask would 
more strongly activate sustained channels, which they thought 
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were responsible for disinhibition. Second, they systematically 
varied the edge-to-edge separation between M1 and M2. Disinhi- 
bition effects dropped dramatically as the separation between 
M~ and M2 increased. Figure 13A plots the disinhibition magni- 
tude as a function of  spatial separation between the masks for 
1 participant. 

The limited spatial range of disinhibition is consistent with 
the model because the spatial range of  inhibitory feedback is 
quite small. In the simulations, the second mask was presented 
1 s before the onset of  the target and remained on throughout 

the display. The SOA between the target and the first mask was 
50 ms. The masks were separated by 1 - 6  pixels, and the target 
and first mask were separated by 3 pixels. Disinhibition magni- 
tude was measured by comparing changes in target durations 
with the first mask alone and with both masks. Figure 13B plots 
the disinhibition magnitude as a function of  spatial separation 
between the masks. Disinhibition magnitude drops off  rapidly 
as the two masks are separated, indicating the limited spatial 
range of  inhibitory feedback. The model predicts a slight in- 
crease in masking (negative disinhibition) for a spatial separa- 
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American Psychological Association. Adapted with permission of the 
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tion of 21 min, which is inconsistent with the data. This discrep- 
ancy might be resolved by changes in the model parameters. 
This has not been rigorously explored, however, as the qualita- 
tive fit to the data is otherwise quite good. 

Feedforward inhibition from the second mask to the target 
was weak because the inhibition follows the model stage of 
transmitter habituation described in Boundary Contour System 
Dynamics. By the time of the target's onset, the second mask 
had depleted transmitter amounts so that the inhibitory signals 

were too weak to have much effect on the duration of the target's 
signals. The habituative transmitters play a more important role 
in explaining data on visual persistence, temporal integration, 
and apparent motion. They also contribute to a prediction de- 
scribed in Habituation later in this article. 

S t imulus  Onse t  A s y n c h r o n y  Versus In ters t imulus  
Interval  

Masking curves generally plot the strength of masking against 
SOA. Although the previous simulation results were plotted in 
the same manner to facilitate comparisons with experimental 
data, additional properties of the model are revealed by plotting 
masking strength against ISI. Figure 14 plots masking functions 
(change in boundary duration from no-mask to mask condi- 
tions) for 25-, 50-, 75-, 100-, and 125-ms target durations for 
two mask durations. Figures 14A and B plot the masking 
strength against SOA, whereas Figures 14C and D plot the same 
data against ISI. When plotted against SOA, it is apparent that 
the short-duration targets receive the most masking at the shorter 
SOAs and the long-duration targets receive stronger masking at 
the later SOAs. This is particularly true for the long-duration 
mask ( 100 ms) ,  but also holds true for the short-duration mask 
(25 ms).  Masking is weak in the model for short SOAs with 
long-duration targets because much of the display consists of 
the target and mask presented together. Because there is no 
erosion of target boundary signals when the target is part of the 
display, the mask inhibition has little effect. 

On the other hand, when the same simulated data are plotted 
against ISI, the masking curves for different target durations 
are nearly superimposed. The superposition reflects that model 
masking occurs when the mask is presented while the target 
boundaries start to erode. When the mask has a long duration 
(Figure 14C), it is most effective if it starts to send inhibition as 
soon as target boundaries erode and continues to send inhibition 
throughout the erosion process. When the mask has a short 
duration (Figure 14D), it is most effective if it waits until the 
target boundaries have eroded somewhat (positive ISI) and then 
sends its inhibition to briefly speed the rate of erosion. None of 
these properties strongly depend on the target duration, as long 
as target duration and luminance are large enough to produce 
strong resonance in the BCS. The model does predict a small 
effect of target duration, with shorter target durations demon- 
strating larger masking. This effect may change with adjustments 
in model parameters, and so it is not a strong prediction of the 
model. 

At first glance this model property appears to be in conflict 
with experimental data. Kahneman (1967) showed that varia- 
tions in the durations of the target and mask had little effect on 
the strength of metacontrast masking if masking strength was 
plotted against SOA. As SOA varied, the curves for different 
durations overlapped almost perfectly (Figure 15A). Given 
these strong results, Kahneman proposed an onset-onset  law, 
which is now frequently referred to as the SOA law, as a funda- 
mental property of metacontrast masking. 

However, there are some problems with Kahneman's  study. 
Kahneman (1967) varied the target and mask durations together. 
The SOA law does not hold when the target and mask have 
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Figure 14. Change in target boundary duration as a function of interstimulus interval (ISI) or stimulus 
onset asynchrony (SOA) for various target durations and two mask durations. In A, change in target 
boundary duration as a function of SOA for a mask duration of 100 ms and various target durations. The 
model predicts that strong masking (large negative values) occurs at shorter SOAs for short target durations. 
In B, same as in A except mask duration is 25 ms. The results are qualitatively similar to A, except each 
curve shows an inverted-U function of masking. In C, a replotting of the data in A (mask duration = 100 
ms) shows that the data obey a strong ISI law. In D, a replotting of the data in B (mask duration = 25 
ms) also shows a strong ISI law. 

different energies (Figures 6 and 8).  Moreover, there is some 
question about the law's  validity for equal energy stimuli. 
Weisstein and Growney (1969) attempted to replicate Kahne- 
man's  results. They found a reliable effect of  stimulus duration. 
Figure 15B plots the data from their first experiment (which 
most closely matched the display parameters used by Kahne- 
man).  In the data, the strongest masking effects occurred with 
the shortest stimulus durations. 

Significantly, Weisstein and Growney (1969) found results 
more similar to Kahneman's  (1967) for subsequent experi- 
ments. Some (of  the 5 total) participants participated in more 
than one experiment, and the trend across experiments suggests 
that participants learned to ignore the effects of  target duration. 
This is a plausible explanation because in both studies partici- 
pants rated the strength of metacontrast masking by simply not- 
ing how faint the target appeared, rather than directly comparing 
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Figure 15. Metacontrast masking as a function of stimulus onset asynchrony (SOA) when target and mask 
durations increase together. In A, psychophysical data from Kahneman (1967) suggest that stimulus duration 
is unimportant and that masking strength depends solely on SOA. From "An Onset-Onset Law for One 
Case of Apparent Motion and Metacontrast," by D. Kahneman, 1967, Perception & Psychophysics, 2, p. 
579. Copyright 1967 by the Psychonomic Society. Adapted with permission. In B, psychophysical data from 
Weisstein and Growney (1969) failed to replicate Kahneman's findings. Instead, they show that increases 
in stimulus duration lead to weaker masking. From "Apparent Movement and Metacontrast: A Note on 
Kahneman's Formulation," by N. Weisstein and R. Growney, 1969, Perception & Psychophysics, 5, p. 326. 
Copyright 1969 by the Psychonomic Society. Adapted with permission. In C, data from model simulations 
when the change in target boundaries is plotted against SOA. Large negative changes indicate strong masking. 
At short SOAs the masking strength follows a strong SOA law as in A. The model fails to obey the SOA 
law for longer SOAs. In D, data from model simulations when the total duration of target boundaries is 
plotted against SOA. Shorter durations indicate stronger masking. Note that the y-axis runs in reverse. The 
data match the findings in B. 
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the target to an unmasked standard stimulus. Following Bloch's 
law (or the Bunsen-Roscoe law), a 25-ms target should look 
fainter than a 125-ms target, even if neither is being masked. It 
may have been difficult for naive participants to disentangle these 
effects. Weisstein and Growney's participants may have initially 
confused the effects of Bloch's law with masking (thus leading 
to stronger masking for shorter targets) but learned to distinguish 
the effects with experience. Kahneman's participants may also 
have experienced similar problems early in the experiment. 

Both Kahneman's (1967) and Weisstein and Growney's 
(1969) experimental data at longer SOAs seems to be incompati- 
ble with related experimental data. Although Figures 15A and 
B show strong masking with an SOA of 250 ms, few studies 
find evidence of masking at SOAs beyond 150 ms (see Figures 
5, 8, and 11 ). It may be that the method used to investigate the 
SOA law is an unreliable measure of masking. 

Although the model generally obeys an ISI law rather than 
an SOA law, it is still able to explain some aspects of Kahne- 
man's (1967) data. Suppose that (at least at short SOAs) the 
participants in Kahneman' s study were able to adequately judge 
the strength of metacontrast masking without confusion of 
Bloch's law. Then the corresponding model measure would be 
the change in target boundary duration in the masking condition 
compared to the no-mask condition. Figure 15C plots the change 
in target boundary duration for various target and mask dura- 
tions as a function of SOA. As in Kahneman's study, the target 
and mask durations vary together. The simulated data show a 
strong SOA law at short SOAs but not at long SOAs. For the 
model, this property exists because masking strength depends 
partly on how long the mask is present after offset of the target. 
When the target and mask have the same duration and when 
they are presented simultaneously for at least part of the display, 
the duration of the mask presented by itself exactly equals the 
SOA. This property holds in Kahneman's data (Figure 15A) 
for short SOAs, and it is here that his curves are most similar. 
Thus, the SOA law found by Kahneman is coincidental; it re- 
quires that the target and mask have identical durations and 
short SOAs. 

If it is supposed that participants in Weisstein and Growney 
(1969) could not distinguish effects of masking from effects of 
Bloch's law, then the corresponding measure in the model is 
the total duration of target boundary signals rather than changes 
in boundary duration. The data, plotted in Figure 15B, show 
that increasing target and mask durations lead to weaker mask- 
ing. Figure 15D plots the total duration of target signals from 
the simulations. The resulting curves are quite similar to the 
data found by Weisstein and Growney. Thus, by considering 
participants' interpretation, the model partly accounts for both 
sets of data. Additional psychophysical experiments, with proper 
anchoring, are needed to verify the model's account of these 
data and its prediction of an ISI law. 

Predictions 

Besides accounting for known properties of metacontrast 
masking, the model makes a number of predictions that test 
the model components. This section describes some of these 
predictions. 

Spatial Range of Inhibitory Feedback 

The strong recurrent inhibition responsible for disinhibition 
effects has a shorter spatial range than the feedforward inhibi- 
tion responsible for many metacontrast properties. Thus, the 
model predicts that metacontrast masking cannot be disinhibited 
unless the mask and target are very close together. When the 
mask and target are farther apart, metacontrast masking may 
occur but disinhibition cannot. 

Habituation 

Alpern (1953) found strong masking with a continuously 
present mask. The model makes a prediction about the effective- 
ness of a very long-duration mask. The model includes the 
depletion of transmitter just before the first competitive stage 
of feedforward lateral inhibition (Figure 1 ). For a continuously 
present mask, the cells sensitive to its edges deplete their avail- 
able transmitter and provide less net feedforward inhibition. 
Thus, for masks presented before the onset of the target and 
continuously thereafter, the strength of masking should decrease 
for larger values of SOA. 

In simulations to demonstrate this, the target was presented 
for 50 ms at a luminance of 1 fL. The (1 ft-lam) mask onset 
preceded the target onset by 0 -50  s, or followed the target onset 
by 1-2  s, and was not tumed off throughout the remainder of 
the simulation. Figure 16 plots the duration of target boundaries 
as a function of the SOA between the mask and the target. In 
following general convention of masking functions, the SOA 
between mask and target is designated as a negative number 
when the mask precedes the target and a positive number when 
the target precedes the mask. The model predicts that as the 
SOA becomes more negative, the strength of masking weakens. 

The shape of the curve in Figure 16 indicates the dynamic 
properties of the habituating transmitters, which change much 
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Figure 16. Duration of target boundaries plotted against stimulus onset 
asynchrony (SOA) in seconds. The mask onset either precedes (negative 
SOA) or follows the target onset and remains on continuously through 
the remainder of the display. The model predicts that masking effects 
weaken as the mask is presented longer before the target. 
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slower than cell activities. For larger negative values of SOA, the 
transmitters have more time to habituate and therefore produce 
weaker inhibition and less masking. Masking effects do not 
entirely disappear even for an SOA of - 5 0  s because the trans- 
mitter amount equilibrates at a non-zero level after about 50 s. 

Neurophysiological Analogues 

The BCS model is not solely a computational model, its 
mechanisms are hypothesized to exist in cortical analogues of 
visual cortex. In particular, the feedforward lateral inhibition 
responsible for metacontrast masking corresponds to the inhibi- 
tion involved in creating endstopped hypercomplex cells. End- 
stopped cells studied by Orban et al. (1979b) had an average 
spatial range of 1.9 °, which is large enough to account for the 
lateral inhibition in metacontrast. Additional research suggests 
that endstopped cells are built from combinations of nonend- 
stopped cells. Bolz and Gilbert (1986), for example, show that 
reversibly inactivating Layer 6 in the cat reduces or abolishes 
endstopping in the superficial layers. These properties are con- 
sistent with the first competitive stage in the BCS architecture. 
Moreover, the BCS's explanation of metacontrast data suggests 
that inactivation of Layer 6 should destroy the masking effects 
of adjacent stimuli. 

studies need to show how the duration of BCS signals quantita- 
tively affects the measures of brightness, recognition, and detec- 
tion used in experimental masking studies. Applying such map- 
pings to the current simulations would add complexity and 
might hide some of the model properties. Also, limitations in 
calculation speed must be overcome to allow larger simulations 
with more realistic stimuli. 

The fact that the model can account for a variety of metacon- 
trast data despite these limitations leads to some strong predic- 
tions. The model predicts that the experimental results discussed 
in this article are robust properties of masking that are not 
restricted to particular methodologies or stimuli. This provides 
an easy test of the model's explanation of the data sets discussed 
here. Perhaps the best evidence that the model strikes a good 
balance between being overly specific or overly general is that 
it produces testable predictions. Experimental studies can test 
the model at the same level analysis that it uses to account for 
data. 

Although it is clear that much work remains, it is significant 
to recognize that no other account of metacontrast masking 
covers all of the data sets discussed here. Moreover, the closest 
competitor, transient-sustained theory, has not been quantified 
in sufficient detail to allow the level of analysis applied to the 
BCS model. 

Fitting Data and Model Extensions 

Sometimes a model that provides a precise fit to one data set 
is fundamentally unable to account for even the general trends 
of a related data set. This article demonstrates that the BCS 
model provides a broad fit of many metacontrast data. The 
simulations reported here generally focus on capturing strong 
trends in the metacontrast data rather than accounting for every 
bump and curve. For example, increasing mask duration has a 
stronger effect in the study of Breitmeyer (1978) than in the 
study of Di Lollo et al. (1993). Because the two studies use 
different participants, methods, and stimuli, it is not surprising 
that they show different effects of mask duration. Although the 
model correctly shows that increasing mask duration produces 
stronger masking, it does not identify the effects of changing 
participants, methods, or stimuli. Similar comments apply to 
the effects of target luminance (Figure 6), distributed contours 
(Figure 10), and disinhibition (Figure 12). Here, the model 
exhibits the basic properties of each effect, but fails to quantita- 
tively fit the data very well. The only recourse is to hope that 
future refinements of the model will account for these details. 

Significantly, the model is in a good position to account for 
these details. The general characteristics of metacontrast mask- 
ing are explained by general characteristics of the BCS model. 
Explaining the more specific details of each experimental condi- 
tion requires identifying the spatial and temporal properties of 
individual cells in the model. Thus, general experimental data 
is accounted for with general model properties, and details of 
the experimental data are addressed with details of the model. 

In addition to accounting for experimental details, the model 
needs to be extended in several ways. For example, the current 
simulations compare the duration of BCS signals across condi- 
tions to demonstrate the effect of metacontrast masking, Future 

Discussion 

This article describes how mechanisms of excitatory feed- 
back, inhibitory feedback, and feedforward inhibition in a neu- 
ral model of visual perception account for complicated dynamic 
data from metacontrast masking studies. The literature on meta- 
contrast masking is large, and current research is exploring the 
model's ability to account for additional experimental data. Ta- 
ble 1 summarizes the role of the different mechanisms in ac- 
counting for the data discussed here. 

It is not the case that any network with these mechanisms 
accounts for the data. For example, Wilson and Cowan (1973) 
simulated masking in a neural network model with recurrent 
excitation and inhibition but were unable to demonstrate the 
effect of SOA. Other studies of visual perception place con- 
straints on the receptive fields and connections between individ- 
ual cells. Indeed, Grossberg and Mingolla (1985a, 1985b) de- 
signed the BCS network to account for spatial properties of 
visual perception. This suggests that metacontrast masking 
should not be investigated independently of other aspects of 
visual perception because many spatial and temporal properties 
of visual perception are closely linked. 

Indeed, the same few mechanisms explain related properties 
of dynamic vision as measured through studies of visual persis- 
tence, temporal integration, apparent motion, and cortical 
afterimages. The BCS model is thus unifying diverse psycho- 
physical data on dynamic vision, and no other model of dynamic 
vision accounts for all of these data sets. Beyond the dynamic 
properties of vision discussed here, the BCS mechanisms have 
also been shown to be consistent with a large set of spatial 
characteristics. The dynamic emergent properties used to ex- 
plain metacontrast masking are consistent with, and depend 
upon, the BCS's roles in boundary completion, texture segrega- 
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Table 1 
Summary of Mechanisms Involved in the Model's Account of  Psychophysical Data and 
Predictions 

Model mechanism 

Resonance Feed forward Inhibitory 
Experimental result strength inhibition feedback Habituation 

Data 
SOA 
Target luminance ¢" 
Target duration ¢" 
Distance 
Mask duration 
Contour ~" 
Disinhibition 
Disinhibition: SOA 
Disinhibition: Distance 

Predictions 
ISI law ¢" 
Continuous mask 
Disinhibition distance 

¢- 

¢. 

¢- 

Note. SOA = stimulus onset asynchrony; ¢" = variations in the variable of interest primarily affect the 
corresponding mechanism; ISI = interstimulus interval. 

tion, shape from shading, brightness perception, 3-D vision, and 
motion processing, among others. Thus, the theory explains not 
only how metacontrast masking occurs but also why. 

Significantly, the model accounts for all of  these data sets in 
a robust fashion. All of  the simulations reported here used a 
single set of  parameters. The changes in network behavior de- 
pend only on the corresponding changes made in the simulated 
display. Small changes in any of the parameters would not dra- 
matically change the qualitative behavior of  the network, al- 
though there would be quantitative differences. Most of the pa- 
rameters used here are the same as those used in Francis et al. 
(1994),  Francis and Grossberg (1996a, 1996b) and Francis 
( 1996a, 1996b), with the few changes providing the model with 
new properties that do not negate previous explanations. This 
type of  robustness is critical because it allows the model to 
retain desirable characteristics even as new data constrain it. 
This does not mean, however, that the model cannot be tested. 
To the contrary the model makes testable predictions that are 
now being investigated. 

The model 's  explanation of  metacontrast data is fundamen- 
tally different from the theory of  transient-sustained inhibition 
(Breitmeyer, 1984). Given the success of  the BCS at explaining 
these data sets, the challenge is now to proponents of  the tran- 
sient-sustained theory to show equivalent results. Such results 
may be hard to come by. Although the core of  the transient-  
sustained theory is simple: Time-lag differences explain why 
maximal masking occurs for intermediate SOAs. From that core 
idea, the theory has grown much more complicated. For exam- 
ple, Breitmeyer (1978) argued that sustained cells inhibit sus- 
tained cells. Breitmeyer et al. ( 1981 ) argued that sustained cells 
inhibit transient cells and that transient cells inhibit transient 
cells. Thus, in the modified transient-sustained theory, every- 
thing inhibits everything else, and it becomes unclear whether 
all these inhibitory signals can be balanced to allow perception 

to occur at all. This article shows that a neural network model 
with recurrent excitation and inhibition does not need the time 
lags and complex inhibitory interactions of  the transient-sus- 
tained theory. 

These findings emphasize an important point for models of  
visual perception. Network interactions between thousands of  
individual cells can lead to fundamentally different behavior 
than would be expected from an analysis of  an individual cel l 's  
temporal or receptive field characteristics. In the BCS model, 
the properties of metacontrast masking emerge from the interac- 
tions of  resonating signals and inhibition rather than being built 
into any individual cell. To understand human vision, one must 
understand its mechanisms, and this means understanding the 
emergent behavior of  large sets of  cortical neurons. Despite the 
daunting complexity of the network if investigated cell by cell, 
this study demonstrates that a few key mechanisms govern its 
dynamic behavior and that the network behavior matches psy- 
chophysical data. 
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Appendix 

Simulation Details 

Network Equations where Ipq is the retinal luminance at position (p, q),  A is the maximum 
activity of the cell, - C  is the minimum activity of the cell, and 

Level  O: Image Plane 

Each pixel has a value associated with retinal luminance. The pixel- 
luminance values of the different stimuli are described in the text. 

Level  1: Center-Surround Cells 

The activity X ]j of a Level 1 cell centered at position (i, j )  obeys a 
shunting on-center, off-surround equation 

d X "  _ 
- -  - - X  ~ + (A - X 3) • Boeqleq - (X li + C) ~, DijpqCq, (A1) 

dt 
Pq Pq 

Bqe q = B e x p [ - o t  -2 log 2[( i  - p)2 + ( j  _ q)2]] (A2) 

D,jpq = D exp [ - / 3  -2 log 2[( i  - p)2 + ( j  _ q)2]] (A3) 

are excitatory and inhibitory Gaussian weighting functions, respectively. 
The term log 2 means the parameters a and /3 set the radius of their 
respective Gaussians at half strength. Parameters B and D are constant 
scaling terms. In the current simulations, the kernels play a minor role, 
as the range of calculations is limited to the center pixel of the kernels. 

To save computation, the equilibrium response of the differential equa- 
tion is found by setting the left hand side of Equation A1 equal to zero. 
The resulting algebraic equation can be solved to find 



CORTICAL DYNAMICS OF METACONTRAST 593 

A E Bijpqlpq - C E Dotal m 
J - -  I ~  g q  X o - (A4)  

1.0 + Y, (Bop ~ + Dop,)l ~ 
Pq 

Leve l  2: Or i en t ed  S imple  Cel ls  

The following equations define oriented simple cells that are centered 
at position (i,  j )  with preferred orientation k. To create a vertically 
oriented input field, or infield, that is specific to the polarity of the 
luminance gradient, divide an elongated region into a left half L0, and 
a right half R0k. Add up the weighted sum of the Level 1 inputs within 
the range of  the left side 

F , j , =  Z E,a, qX~q (A5) 
pq E L,jk 

and the right side 

Gok = Y. EopqX '  m (A6) 
pq E R,jl~ 

of the region, with 

Eijeq = e x p [ - y  2 log 2(i - p)2]; (A7) 

decreasing for inputs further away from the oriented centerline of the 
infield, where the parameter y controls the rate of falloff. Then a simple 
cell that is selectively responsive to a bright-to-dark luminance gradient 
obeys the differential equation 

dX 2~o iJk 2 BD 
dt - X ok + [Fiyk -- Gok]+' (A8) 

where [p] + = max(p,  0). A cell responsive to a dark-to-bright lumi- 
nance gradient obeys the equation 

dX 2DB 
ijk -- X 2DB + [Gijk -- F0,] + . (A9) 

dt 

To save computation, the activities of these cells were computed at 
equilibrium as 

X ~ff '  = [Fuk --  Go,] +, (AIO) 

and 

X ~o  = [Gvk - F0k] +. (AI 1 ) 

d X  4 
dt °k = K[L(M - X~k) - (X3k + j )X4k] .  (n13)  

This equation says that the amount of available transmitter X 4k accumu- 
lates to the level M, using term K L ( M  - X ~k), and is inactivated by 
mass action at rate K ( X  3k + J )X  4k, where J is the tonic input of a 
gated dipole and X 3, is its phasic increment. The rate K is set much 
smaller than 1.0 so that these equations operate on a slower time scale 
than the equations describing cell activities. At the beginning of each 
simulation, each transmitter value is set to the nonstimulated equilibrium 
value X 4k = L M / ( L  + J).  

Leve l  5: F irs t  Compet i t i ve  S tage  o f  H y p e r c o m p l e x  Cells  

The gated signals of a fixed orientation compete using on-center, off- 
surround spatial interactions. Along with the tonic signal coming up 
through the habituative transmitters, each cell also receives a tonic input 
that supports disinhibitory activations at the next competitive stage (see 
Grossberg & Mingolla, 1985a, 1985b). The activity of a Level 5 cell 
obeys the differential equation 

dX 3k _ 5 
dt - - X o ,  + J +  (X3k + j ) X 4 ,  

_ X  5 3 4 tjk Y~ Por~(X pqk "~ J ) X  pqk, (A14) 
Pq 

where - X  3k models passive decay, the parameter J establishes a nonzero 
baseline of activity for the cell. the term (X 3.k + J )X  4k is the gated 
excitatory input from the lower level at the same position and orientation, 
and the term 

X5k Z PiJpq(X3pqk ~" j ) X 4 q k  

pq 

is the inhibitory input from the lower level cells of the same orientation 
and nearby spatial positions. The inhibitory weights fall off in strength 
as the spatial distance between cells increases, as in 

e q p q  = P e x p [ - 6  -2 log 2[( i  - p)Z + ( j  _ q)2]], (A15) 

where P scales the strength of the inhibition, and 6 controls the spread. 
For the simulations in this article, the differential equation Was solved 

at equilibrium as 

J + ( X 3  k + J ) X 4  
ijk (A16) X 5 

qk = 1 . 0  + ]~ ei)pq(X3ntk + J )  x4pqk " 
pq 

Leve l  3: Or ien ted  C o m p l e x  Cells  

Each cell in Level 3 becomes insensitive to the polarity of contrast 
by summing the rectified activities of the cells in Level 2 of the same 
location and orientation. Each Level 3 cell obeys the differential equation 

dX .... ~k = - X  3* + H ( X  ~j,2nD + X 2osqk ) .  (AI2) 
dt  

Parameter H scales the activities of the input signals to the complex 
cell. 

Leve l  4: Hab i tua t i ve  Transmi t t er  Gates  

The signal in each oriented pathway is gated, or multiplied, by a 
habituative transmitter that obeys the equation 

Leve l  6: S e c o n d  Compet i t i ve  S tage  o f  H y p e r c o m p l e x  Cells  

The output signals from the first competitive stage compete across 
orientation at each position. The activity of a cell receiving this competi- 
tion obeys the differential equation 

dX 6, 
dt 

. x } ,  + x3, - x ~ ,  + N [ X } ,  - n ]  + 

- T ~ [XV, q, - R] +, ( A 1 7 )  
pqES 6 

where X ,jk5 and X 3x represent orthogonal orientations, parameter N 
scales the strength of excitatory feedback from a higher order cell of 
the same position and orientation, parameter R is the output threshold 
for bipole cells, parameter T scales the strength of feedback spatial 
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inhibition, and S~j consists of  the six nearest neighbors to pixel (i, j )  
that are not along the cell 's preferred axis of orientation. 

Level 7: Cooperative Bipole Cells and Spatial Impenetrability 

The next level uses a simplified version of bipole cells. As in Level 
1, the in-field of  each horizontal bipole cell is divided into a left side, 
Lok, and a right side, R~jk (top and bottom for vertically oriented bipole 
cells). Each bipole cell then sums up excitatory like-oriented signals 
and inhibitory orthogonally oriented signals within each side. A slower- 
than-linear bounded function squashes the net signal of each side. The 
output threshold of the bipole cell is then set such that boundaries must 
stimulate both sides of  the receptive field for the cell to generate an output 
signal. The differential equation describing each bipole cell activity is 

dX 7k 7 
pqk ) - -  dt -X,)k + f [  ~ (X 6 + (Xp6qK) +] 

pq E R,jk 

+ f [  ~ 6 + (X 6 + (A18) ( X ~ )  - ~K) 1, 
pqGLok 

where 

O w  
f ( w )  = (A19) 

V + w 

acts to squash the net input on each side of the bipole cell 's receptive 
field so that it never exceeds the value of parameter Q. Parameter V 
acts as a graded threshold. Grossberg and Mingolla (1985b) used a 
more complicated bipole cell. Their bipole cells receive excitatory inputs 

from a range of orientations that are weighted by a function that de- 
creases with spatial distance from (i, j )  and orientational difference 
from k. 

Pa rame te r s  

The following parameters were used: A = 67.5, B = 2.5, C = 60.0, 
D = 0.05, H = 0.1, J = 20.0, K = 0.00003, L = 3.0, M = 5.0, N = 
10.0, P = 0.0001, Q = 0.5, R = 0.61, T = 10.0, V = 5.0, a = 0.5,/3 
= 3.0, 3' = 1.5, 6 = 3.0. Each side of the oriented masks in Level 2, 
L~jk, Ruk, were rectangles of  4 X 1 pixels in size. Each side of a bipole 
cell was restricted to a single column (vertical) or row (horizontal) 
extending 18 pixels from the position of the bipole cell. 

Duration of target boundaries for all simulations was measured by 
noting the time when any Level 6 cell corresponding to the target was 
above a constant threshold value of 0.5 and the time when all the Level 
6 signals corresponding to the target dropped below the threshold value 
of 0.5 units. The difference in times gives the total duration of above- 
threshold boundary signals. To save computation, the BCS simulations 
included only one orientation of cells. All equations were solved using 
Euler's method with a step size of  0.01. Activities of cells were checked 
every 0.1 time steps (1 simulated ms) .  Each figure takes approximately 
1 day to calculate on a dedicated IBM RS6000 355 POWERstation, 
except for Figure 16, which took approximately 4 weeks' computer 
time. The density plots in Figure 4 were made with the program 
NXPlot3d (Ludtke, 1992). 
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