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Quantitative Theories of Metacontrast Masking

Gregory Francis
Purdue University, Department of Psychological Sciences

In metacontrast masking, the effect of a visual mask stimulus on the perceptual strength of a target

stimulus varies with the stimulus onset asynchrony (SOA) between them. As SOA increases, the target

percept first becomes weaker, bottoms out at an intermediate SOA, and then increases for still larger

SOAs. As a result, a plot of target percept strength against SOA produces a u-shaped masking curve.

A variety of theories have proposed special mechanisms to account for this u-shaped masking curve,

but new mathematical analyses indicate that the u-shaped masking curve is a robust characteristic of a

large class of neurally plausible systems. Three quantitative methods of accounting for the u-shaped

masking effect are described; then four previously published mathematical models of masking are

analyzed. All the models are shown to produce the u-shaped masking curve with a common method,

called mask-blocking, whereby a strong internal representation of the target blocks the mask’s effects.

This formatted manuscript was created by the author and
does not correspond exactly to the manuscript published in the
journal. References to page numbers should refer to the pub-
lished article.

Introduction

The percept of a briefly flashed visual target is often weakened
when it is followed by a masking stimulus. If the target and
mask have equal intensities and duration, and the target is a
filled circle and the mask is an annulus surrounding the circle,
then the mask often has its biggest effect when it is delayed
relative to the target. It is common in these types of experi-
ments to plot a measure of the target’s perceptual strength as a
function of interstimulus interval (ISI) or stimulus onset asyn-
chrony (SOA), as is shown in Figure 1 (Francis, 1998). This
masking curve takes a u-shape, indicating that the mask has
its biggest effect for intermediate values of SOA or ISI. The
effect of the mask is sometimes referred to as an “inverted-u”
effect, which would be drawn if one plotted the effectiveness of
the mask as a function of ISI or SOA. This type of masking
is called metacontrast masking, and it has been widely studied,
with the u-shaped masking curve playing a prominent role (e.g.,
Alpern, 1953; Bachmann, 1994; Breitmeyer, 1984; Breitmeyer
& Ganz, 1976; Kahneman, 1967; Lefton, 1973; Reeves, 1982;
Weisstein, 1972).

Soon after the computing technology was available, vision
scientists developed computational models that produced a u-
shape in metacontrast masking conditions (Weisstein, 1968;
Bridgeman, 1971), an approach that continues today (Anbar &
Anbar, 1982; Francis, 1997). While these models have individu-
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ally attempted to unify a variety of data on visual masking, and
metacontrast masking in particular, there has been little effort
to unify the models themselves. This manuscript compares and
contrasts the different models and identifies underlying themes
common to all the models. As part of this analysis, it was
noted that occasionally the original description of a model did
not accurately portray its account of masking.

The quantitative basis of the u-shaped metacontrast masking
curve is analyzed in two ways. First, three methods of pro-
ducing the u-shaped curve are introduced in the context of a
fairly general mathematical system. One method, called effi-
cient masking, is proven to robustly produce the u-shaped mask-
ing curve for this system. The other two methods, called mask-
blocking and target-blocking are more qualitative methods, with
their properties demonstrated by computer simulation. Sec-
ond, existing quantitative models of metacontrast masking are
analyzed to identify how the three methods are utilized by the
different models. The main findings are: (1) no model uses effi-
cient masking, (2) all of the models use mask-blocking, and (3)
only one model uses target-blocking. One conclusion from this
analysis is that the u-shaped masking curve is a natural and
robust property of a variety of models, including models that
have not previously been analyzed under metacontrast masking
conditions.

Quantitative methods of masking

This section describes three methods of producing a u-shaped
masking curve under metacontrast conditions. The goal here
is to identify the quantitative underpinnings of the u-shaped
masking curve by analyzing mathematical systems without re-
gard to any particular model. In the next section the quantita-
tive analysis started here will be applied to specific models of
metacontrast masking.

To demonstrate the methods, a common mathematical sys-
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Figure 1: Typical results from a metacontrast masking exper-
iment demonstrate the u-shaped masking curve. In this de-
tection experiment the percentage of correct detections of the
target first decreases then increases as the SOA between the
target and mask increases. See Francis (1998) for details of the
experiment.

tem will be used. Let x(t) correspond to a visual response func-
tion (VRF) produced by the visual system in response to a
target stimulus. Describe x(t) by a differential equation of the
following sort:

dx

dt
= −Ax + (B − Cx)I(t)− (D + Ex)J(t), (1)

where A, B, C, D, and E are non-negative parameters, and
where I(t) and J(t) correspond to target and mask signals, re-
spectively. This equation is not intended to necessarily be a
model of any part of the visual system, but variations of this
type of equation have been used extensively in the neural net-
work literature, where it would be called a shunting equation
(e.g., Grossberg, 1983).

To gain insight into the behavior of equation (1), consider
the behavior of x(t) under metacontrast conditions. Define the
target, I(t), and mask, J(t), terms in equation (1) as:

I(t) =
{

I for 0 ≤ t < τ1

0 otherwise, (2)

and
J(t) =

{
J for τ1 + τ2 ≤ t < τ1 + τ2 + τ3

0 otherwise.
(3)

Here, time zero corresponds to onset of the target, τ1 corre-
sponds to the duration of the target, τ2 corresponds to the ISI
duration between offset of the target and onset of the mask, and
τ3 corresponds to the duration of the mask. When the target
is present, x(t) grows toward the value BI/(A + CI) at a rate
set by (A + CI). During a positive ISI, x(t) undergoes passive
decay toward the value zero at a rate set by A. When the mask
is present, x(t) decreases toward the value −DJ/(A + EJ) at
a rate set by (A + EJ). After mask offset, x(t) again decays
toward the value zero at a rate set by A. The system is piece-
wise linear, and an analytic solution is given in the appendix
(Theorem 1).

Assume that the perceptual strength, P , on which a person
bases a judgment in an experimental task (e.g., detection, iden-
tification, brightness match) is related to an integration of a
function of the VRF:

P =
∫ T

0
F [x(t)]dt, (4)

where F [ ] is a properly chosen function, and T is the stopping
time of the integration. The choices of F [ ] and T correspond
to different assumptions about the relationship of the VRF to
the visual percept, as discussed in detail below.

The following analysis considers three special cases of equa-
tions (1)–(4) that produce the u-shaped masking curve. It
should be emphasized that this analysis is not proposing mod-
els of metacontrast masking, but is only analyzing mathemat-
ical systems that produce a u-shaped masking curve. Inher-
ently some of the mathematical systems will imply certain types
of models, but the connection of the mathematical systems to
models is postponed until the next section.

Efficient masking

The first method of producing the u-shaped masking curves is
called efficient masking because the mask has its biggest effect
on the target VRF (is more efficient) when it is presented later
rather than sooner. For this approach, suppose that longer du-
rations of the VRF correspond to stronger percepts. This rela-
tionship is consistent with theories of consciousness that assume
neural signals must resonate or persist for substantial lengths of
time for responses to be based on them (Grossberg, 1980, 1999;
Dennett, 1992). Equation (4) measures the total time x(t) is
above a threshold if

F [x] =
{

1 for x > G
0 otherwise, (5)

where G is a non-negative threshold parameter and T in equa-
tion (4) is set large enough that the integral considers all non-
zero values of F [x].

To relate equations (1)–(5) to metacontrast masking, values
of P are measured for different ISIs between the target and the
mask stimuli. A notable finding is that this system produces the
u-shaped masking curve in a very robust manner, provided that
the VRF outlasts the mask signals. Intuitively, the persisting
VRF of the target will last for a duration that depends on both
the inherent rate of decay of the VRF and the effect of the mask.
During the ISI, the change in the VRF (−Ax) depends on the
value of the VRF itself, so that just after offset of the target
input, the VRF undergoes rapid decay. As the VRF decreases
in value, the change in the VRF decreases. The effect of the
mask is to decrease the VRF, and this decrease also has an
effect on the rate of VRF decay. The mask is most efficient if
the VRF is left alone during its rapid decay period and the mask
arrives during the slow decay period. The mask is less efficient if
its effect co-occurs with the rapid decay period because it leads
to still slower decay after the mask has turned off.

For those readers familiar with the mathematics of cooling
surfaces the following analogy may help. Suppose you have a
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too hot cup of coffee and you want the coffee to reach a lesser
temperature as quickly as possible by adding a small container
of refrigerated cream. Suppose that the cream is not so cold
that adding it immediately will bring the coffee to the desired
temperature. Then with application of Newton’s law of cooling
(and assuming convection, stirring of the coffee, insulated sides
of the cup, etc.) one finds that the cream is most effective when
it is added after a delay. The reasoning is exactly as above;
adding the cream early cools the coffee at a time when there
would otherwise be substantial cooling, with or without the
cream. Adding the cream a bit later allows the natural cooling
of the coffee to occur unperturbed and then still allows for the
direct cooling effect of the cream. This effect is the basis of
a comment in Gardner (1961, p. 145), where a colleague tells
him, “If you want to keep your coffee hot,...better pour your
cream now instead of later. The hotter the coffee, the faster
its rate of heat loss.” The cream is less efficient at cooling the
coffee when added earlier, analogous to the effect of the mask in
metacontrast masking. Indeed, when equations are written to
describe the coffee cooling problem, one finds that a subset of
these equations is isomorphic to a subset of equations (1)-(5).

The following theorem (proven in the appendix) shows the
conditions where increases in ISI lead to decreases in P . This
relationship produces the downward slope of the u-shaped mask-
ing curve.

Theorem 1: Efficient masking.
Let the VRF and percept strength be defined as in equations

(1), (4) and (5), with x(0) = 0. Let the target and mask terms
be defined as in equations (2) and (3), respectively. Choose
parameters so that D > 0, J > 0, τ2 ≥ 0, and x(τ1+τ2+τ3) > G,
which implies that the VRF is above threshold at the offset of
the mask. Set T in equation (4) large enough so that the integral
includes all non-zero terms of F [x(t)]. Then

∂P

∂τ2
< 0,

which means that increases in ISI correspond to smaller P values
and weaker percepts.

Theorem 1 demonstrates that many systems defined by equa-
tions (1)-(5) produce an increase in masking strength as ISI
increases. This result is extremely robust, as the theorem con-
ditions can be satisfied with a variety of parameter choices.

Efficient masking produces the u-shaped masking curve be-
cause of the interaction of the target VRF decay function and
the mask signal. Presenting the mask early undermines the ef-
fectiveness of the natural decay function. Delaying the mask
allows the rapid natural decay to occur and then be followed by
the direct effect of the mask signal. Delaying the presentation
of the mask too long allows the target VRF to decay so much
that the mask has a diminished effect that grows smaller with
further increases in ISI.

Theorem 1’s requirement that the mask be unable to drive
the VRF below threshold is of critical importance. When
x(τ1 + τ2 + τ3) ≤ G, an increase in ISI either increases P (the
inhibition comes later and the VRF vanishes later) or has no
effect (the VRF vanishes before the mask appears). As a result,

the strongest masking occurs when the VRF reaches its thresh-
old at exactly the same time that the mask signal ends. This
observation leads to the following lemma.

Lemma 1: Most effective ISI.
For the system defined in Theorem 1 with varying τ2 and

otherwise fixed parameters, the ISI that produces the strongest
masking, designated as τ∗2 , is:

τ∗2 =
1
A

ln
{

BI

A + CI

(
1− e−(A+CI)τ1

)}
−

1
A

ln
{

G +
DJ

A + EJ

(
1− e−(A+EJ)τ3

)}
− A + EJ

A
τ3. (6)

This result is found by setting x(τ1 + τ∗2 + τ3) = G, which says
that the VRF reaches threshold at the end of the mask signal,
and solving for τ∗2 . The proof is in the appendix.

Figure 2A shows a masking curve based on equations (1)–(5)
for one set of parameters. The parameters have been chosen
to highlight properties of the system rather than to match any
experimental data. Details of the calculations are given in the
appendix. The stimulus duration was 20 milliseconds, so Theo-
rem 1 applies for SOA≥ 20. Figure 2A shows that the duration
of x(t), P , decreases as SOA increases up to 100 milliseconds.
Figure 2B plots x(t) for four SOAs. The curves for SOA=20
and SOA=80 are applicable to Theorem 1. As the figure shows,
the application of the mask’s signal at time 20 or 80 results in
a drop in x(t). However, the reduction is such that at time 100,
when the mask has just ended for the SOA=80 condition, the
SOA=80 curve is below the SOA=20 curve. That is, adding the
inhibition later leads to a smaller x(t) value after mask offset.
Since x(t) simply undergoes exponential decay beyond time 100,
the later mask produces a shorter x(t) duration. Once the SOA
increases beyond τ1 + τ∗2 (100 milliseconds for the given param-
eters), the duration of the VRF increases an amount that cor-
responds to the increase in SOA, thus the straight line increase
for SOAs beyond 100 in Figure 2A, until the VRF disappears
before the mask appears at SOAs beyond 180.

Efficient masking also accounts for a number of other prop-
erties of metacontrast masking. For example, the ISI for which
the strongest masking occurs is known to shift to smaller val-
ues (and the masking curve to become monotonically increasing
from zero) as mask intensity and duration increases (Weisstein,
1972; Breitmeyer, 1978). This is also a property of any system
that satisfies the conditions in Theorem 1 because a stronger
mask more quickly pulls the VRF down to the threshold value.
This effect is quantified by noting that

∂τ∗2
∂J

< 0, (7)

which says that the strongest masking occurs for smaller ISIs as
the mask signal increases in intensity. A similar lemma shows
that

∂τ∗2
∂τ3

< 0, (8)

which indicates that the strongest masking occurs for smaller
ISIs as the mask signal increases in duration. These results are
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Figure 2: Simulation results based on equations (1)–(4) with
parameters chosen to show effects of efficient masking and mask-
blocking. A shows a u-shaped masking curve based on efficient
masking. B plots x(t) for four different SOAs. C shows a u-
shaped masking curve based on mask-blocking.

proven as Lemmas 2 and 3 in the appendix. In each case, the
basic effect is that the stronger mask has a bigger effect on the
VRF, and so Theorem 1, with its requirement that the VRF
persist beyond the offset of the mask, can only be satisfied for
smaller ISI values. For masks strong enough to decrease the
VRF below threshold before the mask disappears, Theorem 1
never applies.

None of the characteristics of efficient masking seem to be
strongly dependent on the precise form of equations (1) to (5).
For example, if I(t) and J(t) are not step functions but gradu-
ally turn on and off, the masking curves are similar, but more
complicated to analyze. Likewise, Theorem 1 only considers
times after target offset, so how the VRF activity is produced
by the target is not important for the general result. This
means that a variety of models with persisting responses that
decay away are likely to show the u-shaped masking curve, if
model parameters are set appropriately. This includes models of
brightness perception (Hildreth, 1973); flicker detection (Sper-
ling & Sondhi, 1968), visual persistence (Di Lollo & Bischof,
1995; Dixon & Di Lollo, 1994; Farrell, Pavel, & Sperling 1990;
Francis, 1999), information extraction (Busey & Loftus, 1994;
Loftus, Duncan & Gehrig, 1992), physiological visual systems
(Gaudiano, 1992; Grossberg, 1983) and models explicitly de-
signed to account for masking effects, as described below.

Applying Theorem 1 to these models does require a particular
linking hypothesis between the model response and the strength
of the visual percept. Theorem 1 proves the effect of efficient
masking only when the relationship between the VRF and the
quality of the target percept is linked by the duration of the VRF
signal. If the relationship between the VRF and the quality of
the percept is modified, the u-shaped masking curve may not
appear. For example, if the integral of the VRF is assumed to
be related to the percept, the u-shaped masking curve does not
appear with increases in ISI. To be more specific, define the
F [x] function in equation (4) as returning that part of the VRF
that is above a given threshold value:

F [x] = [x−G]+, (9)

where the notation [ ]+, indicates setting negative values equal
to zero. Here G is again a non-negative threshold parameter and
F [ ] simply passes along the remainders above this threshold.
When this definition of F [ ] is combined with equations (2) and
(3) for the target and mask signals, respectively, we get the
following result, which is proven in the appendix.

Theorem 2.
Let the VRF and percept strength be defined as in equations

(1), (4) and (9), with τ2 ≥ 0, and x(0) = 0. Let the target
and mask terms be defined as in equations (2) and (3). Set T
in equation (4) large enough so that the integral includes all
non-zero terms of F [x(t)]. Then

∂P

∂τ2
≥ 0.

This means that increases in positive ISIs correspond to either
larger or unchanging P , which implies monotonically decreas-
ing masking strength. Thus, with percept strength linked to the
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integral of the VRF, equations (1)–(4) cannot directly produce
the u-shaped masking curve. This result is of special interest be-
cause most of the current models of metacontrast masking relate
percept quality to an integral of a VRF, and this relationship
precludes efficient masking from contributing to the u-shaped
masking curve in those models. The next two sections explore
two other general methods of producing a u-shaped masking
curve: mask-blocking and target-blocking.

Mask-blocking

A second method of masking can also be described with equa-
tions (1)–(4). The target signal can block the effect of a rela-
tively weak mask signal, thereby limiting the mask’s effects to
those SOAs where the target signal is weak.

As Figure 2A indicates, the strength of the target percept
decreases for SOAs that would lead to negative ISI values (where
Theorem 1 would not apply) and target and mask signals coexist
for some duration. The basis of this effect is different from
the effect of efficient masking. The mask signal in this system
is relatively weak, which is necessary to satisfy the condition
in Theorem 1 that the VRF persists beyond the offset of the
mask signal. Thus, when both target and mask signals feed
into equation (1), the target signal dominates the mask signal.
The presence of the strong target signal drives x(t) close to
ceiling, thereby blocking the effect of the mask signal. When
both target and mask are present, x(t) approaches the limiting
value

BI −DJ

A + CI + EJ
(10)

at a rate set by A + CI + EJ . In Figure 2 this rate was quite
fast, due to the large value of CI. If parameters are set so that
BI >> DJ and CI >> EJ , then the limiting value is very close
to what it would be without the mask. When the target turns
off but the mask remains present, the limiting value changes to:

−DJ

A + EJ
, (11)

with the rate of approach set by A + EJ . In Figure 2, this
rate was fairly slow, due to the small rate of passive decay, A,
and the weak mask signal, EJ . In (11) x(t) is not pushed to
ceiling by a strong target signal, so the mask signal has a no-
table effect. Taken together, equations (10) and (11) show that
the mask only has much of an impact on x(t) when it appears
without the target signal. As SOA increases, the mask signal
is presented by itself for longer durations, thereby producing
stronger masking. This effect is named mask-blocking because
a strong target signal blocks the effect of the mask.

Figure 2B demonstrates mask-blocking by comparing
SOA=0, SOA=10, and SOA=20 curves. For time less than 20
milliseconds, the SOA=20 curve (which has no mask signal be-
fore time 20) is essentially superimposed on the SOA=0 curve
(which has a mask signal all times before time 20), because
the strong target signal pushes x(t) close to a ceiling value and
the relatively weak signal from the mask in the SOA=0 condi-
tion cannot pull it down from the ceiling. Beyond time 20 mil-
liseconds, the SOA=20 curve is much smaller than the SOA=0

curve, indicating the influence of the mask for the SOA=20
condition. As SOA increases from zero, the temporal overlap
of the target and mask signals decreases, and the duration of
the mask signal alone increases. The more the mask signal is
presented by itself, the stronger the effect of the mask, as a
comparison of the SOA=10 and SOA=20 curves demonstrates.
This explains the drop in Figure 2A for changes in SOA from 0
to 20. Once the SOA increases enough that the mask signal is
always presented by itself, mask-blocking no longer occurs but
efficient masking occurs. This change in masking type is evident
in Figure 2A at SOA=20, where the slope of the curve changes
dramatically. Thus, the masking curve in Figure 2A actually
shows two separate masking effects. Mask-blocking applies for
SOAs less than 20 (negative ISIs) and efficient masking applies
for SOAs greater than 20 (positive ISIs).

Notably, even when the strength of the percept is linked to
the integral of the VRF, as in equation (9), mask-blocking can
produce a u-shaped masking curve; albeit one with a severe lim-
itation. If the mask signal has little effect when the target signal
is also present, then increases in SOA allow the mask to inhibit
more of the persisting response of the VRF. Thus, up until SOA
increases to the duration of the target (and Theorem 2 applies),
increases in SOA will lead to stronger masking. Figure 2C
plots a masking curve that demonstrates mask-blocking with
an integration-based linking hypothesis. Figure 2C is based on
the same computations of x(t) as in Figures 2A and B.

A limitation of the mask-blocking account of metacontrast
masking is that it predicts a u-shaped masking curve when tar-
get percept strength is plotted against SOA, but not against
ISI. If Figure 2C were replotted with ISI on the abscissa, the
bottom of the curve would be at ISI=0. This property is in-
consistent with many experimental studies, which often find
that the strongest masking occurs for positive ISIs. To fix this
discrepancy, a model that uses mask-blocking as the basis of
the u-shaped masking curve needs to extend the target signal’s
blocking properties so that the mask has little effect even for
some positive ISIs. Additional analysis, below, shows how vari-
ous models of metacontrast masking implement this technique.

Target-blocking

A third method of producing the u-shaped masking curve can
also be described with equations (1)–(4). In this method, called
target-blocking, the effect of the mask is to prohibit or curtail
the target signal’s contribution to the VRF. As with mask-
blocking, target-blocking cannot directly account for the u-
shaped masking curve across positive ISIs. To fix this limi-
tation, target-blocking requires that the signal from the target
is delayed relative to the physical presence of the target itself.

Both efficient masking and mask-blocking presume, in differ-
ent ways for each method, that the effect of the mask is weak. In
contrast target-blocking occurs when the effect of the mask is so
strong that the target signal has little opportunity to contribute
to the calculation of a strong percept. Consider equations (10)
and (11) again, but now suppose that the parameters no longer
favor the target signal. If the target and mask signals are pre-
sented simultaneously, a strong mask signal may prohibit x(t)
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Figure 3: Simulation results based on equations (1)–(4) with
parameters chosen to show effects of target-blocking. A shows
a masking curve based on target-blocking. B plots x(t) for dif-
ferent SOAs. For SOA=0, x(t) never goes above the threshold
of 0.2.

from ever reaching a very large value, and the corresponding
percept strength will be small. When the mask signal follows
the target signal, x(t) may get quite large before the mask ap-
pears.

Equations (1)–(4), but with a different set of parameters, can
demonstrate the effect of target-blocking, and results are plot-
ted in Figure 3. Figure 3A plots the masking curve [using the
integral of x(t) as in equations (4)and (9)]. Because the effect
of the mask is very strong, the target signal is blocked when
the mask signal coexists with it, as for SOA=0, and x(t) is
greatly attenuated. For longer SOAs, the effect of the mask is
to quickly curtail any remaining x(t) value. Figure 3B plots
x(t) as a function of time for different SOAs. The mask has
its strongest effect for SOA=0. When SOA=0, x(t) never goes
above threshold for integration (0.2), so the percept strength is
zero. As SOA increases, the target signal does rise above the in-
tegration threshold, and the fading trace of x(t) remains above
threshold for longer durations, thereby leading to larger values
in the calculation of percept strength.

Because the strongest masking always occurs for SOA=0,
target-blocking cannot produce a proper u-shaped masking
curve, with its minimum at a positive ISI, unless one assumes
that the timing of the target signal is offset from the timing
of the physical stimulus. In particular, suppose that the target
signal, I(t) in equation (1), is delayed by δ time units relative
to the actual onset and offset of the physical target stimulus.
If SOA is recalculated to reflect this delay, then the new SOA
values will take values δ time units greater than before. Thus,
the masking curve in Figure 3A will be shifted δ time units
to the right, and will show a u-shaped masking curve with the
lowest point at SOA=δ. More generally, both the target and
mask signal may be delayed relative to their respective physical
stimuli. As long as the target signal is delayed more than the
mask signal, a u-shaped masking curve will be produced with
the strongest masking at a positive ISI.

An example of target-blocking is the transient-sustained ex-
planation of metacontrast masking (e.g., Breitmeyer & Ganz,
1976; Breitmeyer, 1984; Weisstein, 1968, 1972). In this the-
ory the mask produces a strong and fast signal while the target
produces a slower signal that is delayed relative to the mask’s
signal. The net effect is that the target and mask signals over-
lap the most, and the mask has its biggest effect, when there is
a positive SOA between the physical stimuli.

Intermediate conclusions

This section has described three quantitative methods of pro-
ducing the u-shaped masking curve. Of the three methods, ef-
ficient masking is, in one sense, the most straightforward, as it
needs the fewest assumptions about the properties of the target
and mask signals. It is somewhat surprising then, to discover
that efficient masking seems to have never been considered as
an explanation for the u-shaped masking curve.

On the other hand, both mask-blocking and target-blocking
are less sensitive than efficient masking to the relationship be-
tween the VRF and percept strength. While efficient masking
does not apply when the percept strength is related to the inte-
gral of the VRF, mask-blocking and target-blocking produce u-
shaped masking curves for a wide variety of relationships. Mask-
blocking and target-blocking are more qualitative descriptions
of masking; but their properties can be instantiated in a variety
of mathematical systems. Indeed, their properties have previ-
ously been recognized as methods of producing the u-shaped
masking curve, although sometimes only in verbal theories that
have not been converted to quantitative models.

The different methods can exist in isolation or can coexist.
For example, the masking curve in Figure 2A shows effects
of both efficient masking and mask-blocking. The former is
demonstrated for SOAs greater than 20 (positive ISIs) while
the latter occurs for SOAs less than 20 (negative ISIs). Like-
wise, if the mask signal has any effect on the VRF when it
coexists with the target signal, some amount of target-blocking
is possible, although any effects may be washed out by the larger
effects of efficient masking or mask-blocking. This is the case
for the masking curves in Figures 2A and C, where minuscule
effects of target-blocking are below the resolution of the graph
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in Figure 2B.
Target blocking can exist by itself, if the mask is so strong

that no part of the VRF persists after the mask signal. In such
a case neither efficient masking nor mask-blocking can occur.
It is also possible to get mixtures of appreciable target-blocking
and mask-blocking by varying mask strength. An example of
this type of mixing is shown below.

Analysis of previous models

The discussion now turns to an analysis of earlier models of
metacontrast masking. There are a great variety of theories of
metacontrast masking, with particular interest in accounting for
the u-shaped masking curve. Four of these theories have been
described as quantitative models. In the subsequent analyses
we summarize what part of each model is critical for producing
its fundamental behavior and, in some cases show, that the
original authors misunderstood key mechanisms of their model.
The main finding is that all of the models use mask-blocking to
produce the u-shaped masking curve.

All the models provide a quantitative description of masking,
but for some models the current analysis relies on simulation ex-
amples rather than a mathematical description. The following
discussion presents the models in order of how quantitatively
the explanation of masking mechanisms can be described.

Anbar and Anbar’s decay model

Anbar and Anbar (1982) proposed a connection between mod-
els of brightness perception (Hildreth, 1973) and the u-shaped
metacontrast masking curve. Their approach was similar to the
analysis of equation (1); they defined a visual response function
and made some assumptions about how the mask interacts with
the VRF. Using the earlier notation, the equation for the VRF
generated by a target and followed by a mask is:

x(t) =


I for 0 ≤ t < τ1

Ie[−Iγ(t−τ1)] for τ1 ≤ t < τ1 + τ2

Ie[−Iγτ2]
(

Ie[−Iγ τ2]

J

)p
t = τ1 + τ2

x(τ1 + τ2)e[−x(τ1+τ2)
γ(t−τ1−τ2)] for t > τ1 + τ2,

(12)
where γ and p are parameters that are also used in models of
spatial brightness contrast. As before, τ1 is the target duration
and τ2 is the ISI between offset of the target and onset of the
mask. The mask duration is not specified because in Anbar and
Anbar’s model it only has an effect on the target’s VRF at its
onset.

The first line of equation (12) sets x(t) as the strength of the
target input. The second line describes exponential decay at a
rate determined by the strength of x(t) at target offset, which
is the value I. The third line describes a discontinuous drop
in x(t) at the onset of the mask. The effect of the mask is to
drop x(t) to a fraction of the value it would have were there
no mask. The fraction is the ratio of the current value of x(t),
which is I exp[−Iγτ2], and the value of the mask input, J . This
ratio is the fraction in line three, and will be called the masking
ratio in the discussion below. The masking ratio is raised to

the power p before multiplying the current value of x(t). The
fourth line indicates exponential decay after the mask-induced
drop, at a rate determined by the strength of the VRF at mask
onset, x(τ1 + τ2). The strength of the target percept, P , was
modeled as the integral of x(t) as in equations (4) and (9) with
G = 0.

After an analysis similar in style to the proof of Theorem 1,
Anbar and Anbar (1982) showed that the integral of x(t), P ,
decreases as ISI increases, up to a maximum ISI. This produces
the downward slope of the u-shaped masking curve. Beyond
that maximum ISI, further increases in ISI lead to increases
in P , which completes the upward slope of the masking curve.
Figure 4A shows a u-shaped masking curve generated by this
system (details of simulations are in the appendix). The mech-
anisms underlying this curve will be shown to be a variation of
mask-blocking.

The drop in the masking curve as ISI increases can be under-
stood by looking at the curves in Figure 4B, which plot x(t) as
a function of time for three ISIs. For the ISI=0 curve, τ2 = 0
and the mask has no effect on the decay of x(t) because the
masking ratio in equation (12) equals one (I = J in these sim-
ulations). Since any effect of the mask is only at its onset, x(t)
is unchanged from a no-masking condition. This is very strong
mask-blocking for the shortest ISI. For the ISI=50 condition,
the masking ratio is less than one because x(t) has undergone
decay during the ISI period; as a result x(τ1 + τ2) drops discon-
tinuously to a fraction of its original value. Thus, the mask is
not blocked as effectively by the target signal, and the down-
ward slope of the u-shaped masking curve is formed. However,
the system is slightly more complicated in that the effect of
the mask also causes the rate of subsequent decay to decrease
and the ISI=50 curve eventually is above the ISI=0 curve. In
net, though, increasing the ISI from 0 to 50 produces release
from mask-blocking, and that release has a bigger effect than
the slower rate of decay. So P drops as the ISI increases from
0 to 50.

As ISI increases from 50 to 100, the VRF undergoes fur-
ther decay during the ISI period. This produces several effects.
First, the masking ratio becomes smaller, which implies that the
mask has a bigger effect. Second, the magnitude of the discon-
tinuous drop in x(t) at mask onset is smaller and occurs later
than for the ISI=50 condition; and this smaller and later drop
tends to increase P relative to the ISI=50 condition. Second,
the later appearance of the mask means that the slower rate
of decay is also introduced later; and this tends to decrease P
relative to the ISI=50 condition. Thus, there are two effects,
one that promotes decreases in P and another that promotes
increases in P . For the simulation parameters used here, the
second term has the bigger effect, so P continues to drop as ISI
increases from 50 to 100. For longer ISIs, the change in rate of
decay has little effect and the later arrival of the discontinuous
drop in x(t) explains why P increases with ISI.

Further analysis indicates that the primary basis of the u-
shaped masking function in the Anbar and Anbar model is a
variation of mask-blocking, and that the mask-induced changes
in rate of decay have only a secondary and coincidental effect.
To support this claim, additional simulations were run that
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Figure 4: Simulations for Anbar and Anbar’s (1982) model. A shows a u-shaped masking curve that replicates their original
finding. B plots x(t) for three SOAs and shows the effect of the discontinuous drop in x(t) and the effect of changing the rate
of decay at mask onset. C plots the u-shaped curve that results from fixing the rate of decay to be 0.02. D plots x(t) for three
SOAs that shows the effect of the discontinuous drop in x(t). The rate of decay is fixed to be 0.02 in these calculations. E shows
the masking curve that results from not applying the discontinuous drop in x(t), but allowing the mask to change the rate of
decay. F plots x(t) for three SOAs and shows the mask’s effect of changing the rate of decay at mask onset.
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isolated the effect of the discontinuous drop in x(t) at mask
onset and the effect of changing the rate of decay. Figure 4C
shows the masking curve generated when the rate of exponential
decay was fixed at 0.02. The masking curve is still u-shaped,
which indicates that the changes in decay are not crucial for
generating the u-shaped masking curve. With the decay rate
fixed it becomes clear that the Anbar and Anbar model accounts
for the u-shaped masking curve because of mask-blocking. As
ISI increases, the effect of the mask becomes stronger because
x(t) is smaller when the mask appears and the masking ratio
becomes smaller. For strong enough x(t) the masking effect is
able to offset the fact that masking comes later (compare curves
for ISI=20 and ISI=40 in Figure 4D). Eventually, though, the
change in the immediate effect of the mask asymptotes because
x(t) is not so different between masks with ISIs of 40 and 60.
Since the mask comes later with the larger ISI (Figure 4D), the
masking curve increases.

Additional simulation results in Figures 4E and F show that
removing the discontinuous drop in x(t) due to mask onset and
keeping the change in the rate of decay leads to a very different
masking curve. As ISI increases from zero, the masking curve
rises due to the slower decay introduced by the onset of the
mask. Eventually, the later arrival of the slow decay stops being
as effective because x(t) is too small for the slower decay to
contribute very much to P (compare the curves for ISI = 70
and 100 in Figure 4F). When the effect of changing the rate of
decay is combined with the mask-blocking effects, the downward
slope of the masking curve in Figure 4E can cause the bottom
of the u-shaped masking curve in Figure 4C to shift to the right,
as in Figure 4A. This is largely a coincidence of the particular
model parameters and stimulus properties selected for this set
of simulations.

The bottom line is that the u-shaped masking curve is the re-
sult of a type of mask-blocking. A strong target VRF weakens
the effectiveness of the mask; in this case by producing a mask-
ing ratio close to one. As ISI increases, the target VRF decays
in strength, so the mask ratio becomes smaller and the mask
has a bigger effect. This is the basis of the decreasing part of
the u-shaped masking curve. Eventually, the mask arrives too
late to have much effect on the percept, and the masking curve
rises again for larger ISIs.

Bridgeman’s recurrent lateral inhibition simu-
lations

Bridgeman (1971) proposed a seemingly very different model
of metacontrast masking, which was subsequently refined in
Bridgeman (1977, 1978). This model considers interactions of
a single layer of neurons with recurrent lateral inhibition. Be-
cause the model includes a time delay as inhibition travels from
one neuron to another, and the delay increases with spatial sep-
aration of neighboring cells, the network produces oscillatory
responses. Moreover, a stimulus that initially feeds into only
a few cells can produce variations in activity across large por-
tions of the network. Each cell, i, in the network has an activity,

xi(t), which is calculated by the equation:

xi(t) =

Ii(t)−
3∑

k=−3,k #=0

w|k|xi+k(t− |k|) + SGi(t)

+

. (13)

Here, Ii(t) corresponds to input from various stimuli. The sum-
mation indicates lateral inhibition from nearby cells, with a time
delay added to cells that are further away. Gi(t) is a number
randomly chosen from a standard normal distribution. S is a
parameter that scales the random value. The notation [ ]+ in-
dicates a nonlinearity so that if the terms inside are negative,
xi(t) is set equal to zero.

Bridgeman suggested that the full pattern of activity across
the network, rather than the behavior of just those cells stim-
ulated directly by the input, is responsible for producing the
visual percept. To measure masking effects, Bridgeman com-
pared two spatio-temporal responses of the network: first with-
out a mask, and second with a mask. To make the comparison,
Bridgeman (1978) calculated, at every time step, the squared
spatial correlation of cell activities. These squared correlations
were then averaged over time and this average was taken as
the relative strength of the target percept. Figure 5A plots
the squared correlation as a function of time (each iteration
corresponds to roughly 30 milliseconds) when the correlation is
between two runs of the target alone (no mask). The correlation
drops toward zero as time progresses because the target signal
gradually drops below the level of the random noise inputs. The
average height of this curve corresponds to the strength of the
target percept. The curve essentially replicates simulations in
Bridgeman (1978). Details of the current simulations are pro-
vided in the appendix.

To simulate metacontrast masking, one presents a target
stimulus at some set of localized cells and then presents a mask
stimulus at nearby flanking cells after an appropriate delay. Fig-
ure 5B shows that the average squared correlation value de-
creases as SOA increases up to two iterations (roughly 60 sim-
ulated milliseconds). This is the basic u-shaped masking curve.

Parts of Bridgeman’s model seems quite consistent with the
earlier analyses. In particular, the squared correlation is a VRF
that decreases over time, and the strength of the target percept
is the average (which is just a rescaling of the integral for these
simulations) of this VRF. Indeed, much of the model’s behavior
can be described as mask-blocking, although this only becomes
clear when the quantitative basis of the system is understood
by other terms.

To see how the u-shaped masking curve comes about in
Bridgeman’s model consider a situation where the network ac-
tivities behave in a linear fashion and the noise term is ignored
(S = 0). If stimuli are chosen properly (e.g., the background
luminance is large enough), the nonlinearity in equation (13)
never applies. For such stimuli the network activities act in a
linear fashion, so that the activities generated by a joint target
and mask trial are equal to the sum of activities generated by
separate target and mask trials. Consider two separate sim-
ulations, one where the target is presented alone and another
where the mask is presented alone. The correlation between a
metacontrast masking trial and target alone trial can be found
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Figure 5: Simulations for Bridgeman’s (1978) model. A plots the squared correlation as a function of time for two runs of target
only presentations. The squared correlation gradually decreases because of noise added at each cell and iteration. B shows a
u-shaped masking curve that replicates Bridgeman’s basic finding. C plots variances for target-alone and mask-alone simulations
as a function of time for SOA=0. The curves overlap substantially, thereby allowing mask-blocking to occur. D plots the squared
correlation values for three SOAs as a function of time. E plots variances for target-alone and mask-alone simulations as a
function of time for SOA=2. Because the mask variance does not overlap as much with the target variance, its masking effect is
stronger than in C. F shows a u-shaped masking curve with r2 calculated using equation (15).
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by measuring the correlation between the activities in the target
alone simulation and the sum of target and mask activities in
the separate trials. By rewriting the correlation in terms of
variances one finds that the squared correlation between the
metacontrast trial and the target alone trial at time (iteration)
t can be written as:

r2(t) = 1− σ2
M (t)

[
1− r2

TM (t)
]

σ2
T (t) + σ2

M (t) + 2σT (t)σM (t)rTM (t)
. (14)

Here σ2
T (t) is the variance across cell activities for the target

only simulation at time t, σ2
M (t) is the variance across cell ac-

tivities for the mask only simulation at time t, and rTM (t) is the
correlation between cells in the separate target and mask sim-
ulations at time t. The derivation of equation (14) is provided
in the appendix.

Again to help simplify the analysis, suppose that rTM (t) = 0.
Then equation (14) reduces to

r2(t) = 1− σ2
M (t)

σ2
T (t) + σ2

M (t)
=

σ2
T (t)

σ2
T (t) + σ2

M (t)
. (15)

Thus, the squared correlation at a given time is the ratio of
target variance and the sum of target and mask variances. The
effect of the mask is to make this ratio smaller by making the
denominator larger. If the target variance is much larger than
the mask variance, the squared correlation is nearly one. If the
target variance is small compared to the mask variance, the
squared correlation is near zero. Thus, the mask has a weak
effect when the target variance is large. A strong target signal
blocks the mask signal.

Figure 5C plots σ2
T (t) and σ2

M (t) as a function of time for
SOA=0. The variance curves overlap substantially, and spike
to their largest value when the target/mask stimulus is first pre-
sented. The variance curves then decrease as neural activity is
distributed across all the cells of the network. For the particu-
lar stimuli used in this simulation, σ2

M (t) is slightly larger than
σ2

T (t) much of the time. As a result, r2(t) is generally less than
0.5, and grows smaller over time as Figure 5D shows. For the
SOA=0 curve, the decrease in r2(t) over time occurs because
σ2

T (t) decreases slightly faster than σ2
M (t), thereby causing the

ratio in (15) to get smaller over time.
Figure 5E plots the variance curves with an SOA=2 and Fig-

ure 5D plots the corresponding r2(t) curve. Since the mask
stimulus is presented at time 2, the mask variance is zero for
smaller times, and r2(t) equals one. When the mask appears,
its variance term spikes and then decreases as the mask activ-
ity spreads throughout the network. When the mask variance
spikes, the target variance has already decreased because the
network equations act to distribute the target’s activity across
cells. As a result, the peak of the mask variance term coincides
with a relatively weak part of the target variance term and the
effect on the calculation of squared correlation in equation (15)
is substantial. In comparing the r2(t) curves for SOAs of 0 and
2, the sum of squared correlation is smaller for the SOA=2 curve
because the strong masking late in the curve offsets the freedom
from masking before the mask arrives early in the curve. The
net effect is that the average squared correlation drops as SOA
increases from 0 to 2, as in Figure 5F.

When analyzed in terms of target and mask variances and
their contributions to squared correlation, the u-shaped masking
curve is seen to be a variation of mask-blocking. When the
target variance is strong, the effect generated by the mask is
weak. The overlap of strong target variance with the mask
variance decreases as SOA increases, so up to a point, increases
in SOA lead to stronger masking. For long SOAs, the change
in target variance at time of mask onset is minor and mask-
blocking is weak. As a result, the squared correlation increases
with SOA because the mask’s effect comes later. Figure 5D is
analogous to Figures 2B and 4B although the mechanisms and
interpretation of components are dramatically different.

There are other characteristics of Bridgeman’s model that
complicate the story somewhat. The above analysis assumes
that rTM (t) = 0, which is not generally true. In the current
simulations this correlation varied between ±0.5, starting with a
negative value and generally increasing toward a positive value.
These changes affect the values of points on the masking curve,
but the curve retains its u-shape. In additional simulations
rTM (t) was replaced with random variables between ±0.5 and
the masking curve still showed the u-shape. Likewise, includ-
ing the noise term at every iteration of the network generally
makes only minor changes in the overall shape of the mask-
ing curve. Figure 5B is the masking curve with the noise and
proper rTM (t) used. Finally, if stimulus conditions are set so
that the nonlinearity in equation (13) does apply, the masking
curve will again deviate somewhat from the above analysis, but
the u-shaped curve still is generated.

This analysis also highlights which properties of the model are
important for its account of metacontrast properties. For exam-
ple, it does not seem to be significant that there is a temporal de-
lay as neural activity spreads from one cell to another. Nothing
in the calculation of variance depends strongly on the character-
istics of delay. Likewise, the oscillatory responses in the model
do not seem to be crucial for producing the u-shaped masking
curve. As another example, model simulations in Bridgeman
(1978) correctly showed that masking becomes weaker as the
target and mask stimuli are separated in space. Given that the
calculation of target variance and mask variance do not depend
on the location of their respective stimuli in space, we can con-
clude that the effects of separation must be influencing rTM (t).
A similar analysis can be applied to other simulations to iden-
tify how they influence equation (15) and the overall masking
effects. More generally, it is clear that the u-shaped masking
curve is a robust property of this model, because it depends on
mask-blocking, which is easily generated.

Francis’ Boundary Contour System simulations

Francis (1997) simulated a neural network model called the
Boundary Contour System (BCS), which was originally pro-
posed by Grossberg and Mingolla (1985a,b) to account for prop-
erties of spatial vision. The network is a complicated one,
with multiple levels, specific receptive field shapes, lateral inhi-
bition, cross-orientational inhibition, excitatory feedback, and
inhibitory feedback. A full simulation involved simultaneous
integration of nearly 40,000 differential equations through hun-
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dreds of time steps.
As Francis described the model’s behavior, the u-shaped

masking curve arose from interactions between excitatory feed-
back generated by the target and feedforward inhibition gen-
erated by the mask. The excitatory feedback results in long-
lasting persistence of signals corresponding to the target (Fran-
cis, Grossberg & Mingolla, 1994), but the strength of the feed-
back weakens as the feedback signals slowly fade away [the pre-
cise mechanisms are complicated and described in Francis et al.
(1994)]. If the inhibitory signal from the mask arrives when
the excitatory feedback is strong (e.g., short SOA or ISI), then
the inhibition has little effect. If the mask arrives when the
excitatory feedback is weaker, then the mask can curtail the
remaining persisting signal. If the mask arrives much later, it
is too late to have much of an effect. In Francis’ simulations,
the percept strength was measured as the duration of target re-
sponses above a threshold (equations 4 and 5), and Figure 6A
plots the percept strength as a function of SOA. Simulation
details are in the appendix.

Francis’ verbal description of network interactions is essen-
tially a description of mask-blocking, although other factors
also play a role. The excitatory feedback in the BCS effectively
lengthens the duration of the target signal, and the mask’s in-
hibitory signal is too weak to have much effect when the target
(or the feedback) is present. Figure 6B shows this interaction
by plotting the activity of the model’s VRF against time. In
this model the VRF is the largest cell activity that is gener-
ated by the target. When this activity drops below a threshold,
the activity of the target has effectively vanished from the net-
work. The target percept strength is the time spent above the
threshold. Three curves are shown with SOAs of 0, 40 and 80
milliseconds. In all conditions, the VRF remains strong well
beyond the offset of the target (16 milliseconds) because of the
excitatory feedback. The VRF also peaks after target offset be-
cause there is a slight time lapse before the strong excitatory
feedback contributes to the measured cells.

Figure 6B is analogous to Figures 2B, 4D, and 5D, which
demonstrate mask-blocking. In figure 6B, the SOA=0 curve
shows weak masking at short times, as indicated by its being
slightly below the other curves. The overall masking effect is
stronger for the SOA=40 curve, which exhibits the influence of
the mask after approximately time 50 (there is a short delay
before the inhibitory signal from the mask reaches the appro-
priate level of the neural network). Masking with SOA=80 is
stronger still, as is indicated at approximately time 90 where
the SOA=80 curve branches down from the SOA=40 curve.

Francis (1997) related percept strength to the duration of the
target-generated signals, with a variation of equations (4) and
(5) above, so it is possible that the properties of efficient mask-
ing also apply here. Because of the complexity of the model it
is difficult to disentangle the effects of mask-blocking from any
effects related to efficient masking. However, Figure 6C demon-
strates a similarly shaped masking curve for the integral of the
VRF (equation 9). Given that the bottom of each masking
curve is around SOA=70, and that efficient masking is unlikely
to apply in Figure 6C because of Theorem 2, it seems probable
that efficient masking has only a small effect on the u-shaped
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Figure 6: Simulation results for Francis’s (1997) BCS model. A
shows a u-shaped masking curve when the percept strength is
measured as duration of the VRF. B plots the visual response
function plotted against time for three different SOAs. C shows
the u-shaped masking curve when percept strength is measured
as integration of the VRF signal.
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masking curve in Figure 6A.
In short, despite its complexity, the BCS system’s dynam-

ics account for the u-shaped masking curve with a variation of
mask-blocking. One should not conclude that the BCS’ com-
plexity is unnecessary, though, as the BCS has been used to
account for a variety of other properties of visual perception
that would otherwise seem to have little to do with metacon-
trast masking (e.g., Grossberg, 1994). One of the strengths of
this theory is that its components were designed to accommo-
date entirely different data sets.

Weisstein’s transient-sustained simulations

Weisstein (1968, 1972) elaborated on an idea in Landahl (1967)
to show that a system of differential equations could produce
metacontrast masking if one designed the equations so that the
inhibitory signal from the mask was faster and more transient
than the excitatory signal generated by the target. The model
was described as two pathways of neurons; one for the target
signal and one for the inhibitory signal from the mask. Weisstein
quantified this idea with a simple network of five neurons (three
in the target excitatory path and two in the inhibitory path).
Figure 7A schematizes the neurons in this model. This was not
meant to be a formal model of the cellular basis of metacontrast
masking, but one simple system that demonstrated the effect.

As Weisstein described the model, since inhibition develops
at a faster rate than excitation, and masking is strongest when
the inhibitory signal from the mask overlaps with the excitatory
signal from the target, the mask should be delayed relative to
the target, else the inhibition comes and goes before excitation
begins. This verbal description suggests that target-blocking is
the basis for the u-shaped masking curve in this system. As
it turns out, this description is incomplete, and mask-blocking
also plays an important role.

In setting out to replicate Weisstein’s simulations, it was dis-
covered that there are a few discrepancies in the model descrip-
tion. First, there seems to be an error in the description of the
inhibition coming into the third cell (3T ) in the target pathway.
The apparent correction is given in the appendix of this paper.
Second, it is unclear exactly how Weisstein measured the tar-
get percept. In many places in the text Weisstein (1968, 1972)
proposed to measure percept strength as the “maximum cumu-
lative frequency of firing” of cell 3T . It is not clear what this
means. Because firing frequency cannot become negative, the
maximum cumulative frequency is the same thing as the cumu-
lative frequency at time infinity. After playing with a simulation
and gleaning information from Weisstein’s graphs, it seems that
for some simulations she actually measured the target percept
as the maximum frequency of firing for cell 3T . If we run the
simulation this way, we get the masking curve in Figure 7B,
which is quite similar to one found by Weisstein (1968, Fig-
ure 2). While there are minor differences, the new simulation
basically verifies Weisstein’s original findings.

Moreover, it seems that the underlying computational basis
for the behavior of the network is accurately portrayed by Weis-
stein’s verbal discussion and is an example of target-blocking.
The relative timing of the target and mask signals matters the

most because the maximum response at the third target cell
will be smallest if the inhibitory signal from the mask directly
overlaps with the target excitation feeding into that cell. Fig-
ure 7C shows the excitatory and inhibitory inputs feeding into
cell 3T as a function of time for three different SOAs. The net
input into cell 3T is the excitatory value minus the inhibitory
value at each moment in time. As SOA changes, the timing of
the inhibitory input varies. For SOA=0 much of the fast act-
ing inhibitory input grows and disappears before the excitatory
input arrives. As a result, the excitatory input to cell 3T is
quite strong, and the cell reaches a large peak response. When
the mask is delayed for an SOA of 70 milliseconds, the inhi-
bition overlaps strongly with the excitation, so the net input
to cell 3T is weaker than before. As a result, cell 3T ’s peak
activity is smaller. When the mask is delayed for an SOA of
120 milliseconds, the inhibition arrives when the excitation is
fading, so the masking effect on cell 3T is less than it was for
an SOA of 70. These target-blocking effects are made clear in
Figure 7D where the peak activity of cell 3T can be easily found
for different SOAs.

However, there are problems. Elsewhere in Weisstein (1968),
and explicitly in Weisstein (1972, pp. 248–249), it is stated
that the measurement of target percept strength is the integral
of activity from the third cell in the target pathway. Moreover,
it seems that this was the method used for fits of the model
to various psychophysical data. This leads to an additional
problem. The calculation of the integral as defined by Weisstein
is inconsistent with her verbal description of the model. In any
simulation where the equations cannot be solved analytically,
the integral is not really taken to positive infinity, but to some
large time where the term to be integrated is negligible. In her
simulations Weisstein set this large time to be 400 simulated
milliseconds after onset of the target. As it turns out, the choice
of integration range has a big effect on the shape of the masking
curve.

Figure 7E shows two masking curves. One curve, To time
400, corresponds to the integration method used by Weisstein
(1972), which was integration of cell 3T activity from time zero
to time 400. The other curve, To negligible, corresponds to a
new simulation where the integral was taken up to a time where
the activity of cell 3T reached some negligible value. This time
varies from one masking situation to another. The two curves
are strikingly different, with the To negligible curve flattening
out for SOAs between 70 and 170 ms. At SOAs beyond 180
milliseconds both integrals are identical.

For the cell parameters used by Weisstein, the response of cell
3T outlasts the inhibition generated by the mask (note the time
scale difference between Figures 7C and D). As a result, after
the inhibitory signal from the mask disappears, the integral of
cell 3T ’s activity continues to contribute to the total integral.
By stopping the integral at time 400, Weisstein inadvertently
ignored these contributions. The curve in Figure 7E marked as
To time 400 starts to increase for SOAs beyond 70 milliseconds
because there is less overlap between the excitation and inhibi-
tion feeding into cell 3T (as in Figure 7C). As a result, input to
cell 3T is freed from target-blocking and the activity of cell 3T
is bigger and the resulting integral is larger. However, the
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Figure 7: Simulation results for Weisstein’s (1968, 1972) model. A schematizes the cells and connections in the model. The
dashed line indicates inhibition from the mask. B shows a u-shaped masking curve that generally replicates a simulation in
Weisstein (1968). C plots the inputs to cell 3T (one excitatory and three inhibitory) as a function of time, with the inhibitory
input changing for different SOAs. Because of the delay in the creation of the excitatory input, the greatest overlap occurs when
the mask is delayed by 70 milliseconds. D plots the activity of cell 3T as a function of time for three SOAs. E shows two u-shaped
masking curves generated by taking the integral of cell 3T activity. The different shape of the curves is due to undermeasurement
of the full integral by the To time 400 method compared to the To negligible method.
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delayed inhibition also means that the mask is present for a
larger time without mask-blocking. This can be seen in Fig-
ure 7D where the curve for SOA=120 crosses below the curve
for SOA=70. Thus, going from SOA=70 to SOA=120 has two
effects on the integral. First, it causes release from target-
blocking, which tends to increase the integral. Second, it causes
release from mask-blocking, which tends to decrease the inte-
gral. By stopping the integral at time 400, Weisstein’s sim-
ulations did not measure the full effect of the mask, so the
target-blocking effect tends to dominate the value of the inte-
gral. Thus, the To time 400 masking curve increases as SOA
increases from 70 to 120.

However, when the full effect of the delayed inhibition is mea-
sured in the To negligible simulation, one sees that the increase
in cell 3T activity due to release from target-blocking is nearly
exactly offset by the release from mask-blocking when the mask
arrives later. This explains why the To negligible curve in Fig-
ure 7E is flat between SOAs of 70 and 170. Weisstein’s integra-
tion technique stopped too soon to add in the full effect of the
mask. Mask-blocking also contributes to the downward slope of
the curve for SOAs less than 70.

These new simulations clarify the results reported by Weis-
stein. First, the model can produce the u-shaped masking curve
in a number of different ways, depending on how the cellular re-
sponses are related to percept strength, and depending on the
range of integration of the cellular response. One could rea-
sonably argue that the integration of cell 3T only occurs in
400 millisecond time periods. If one makes this assumption,
then target-blocking is more important than mask-blocking, al-
though both are present. However, it is not clear why 400 is
more appropriate than 300 or 500 millisecond integration peri-
ods. Moreover, while reasonable, this specific integration period
is not consistent with the verbal description Weisstein used in
most of her discussion. When the model is analyzed in its in-
tended spirit, one finds that target-blocking and mask-blocking
effects are equally represented in the masking curve. This is
a notable finding because Weisstein’s simulation results are of-
ten taken as a quantitative version of the transient-sustained
theories (e.g., Bischof & Di Lollo, 1995). At least as described
verbally, the transient-sustained theories seem most similar to
target-blocking interactions. However, Weisstein’s simulations
actually include both target-blocking and mask-blocking effects.
It seems that Weisstein’s original version of Figure 7B is the sole
production of a u-shaped masking curve that uses only target-
blocking interactions.

Conclusions

That masking strength should ever increase with ISI has always
been the most notable characteristic of metacontrast masking,
and seemingly was the most difficult property to explain. The
current analysis demonstrates that this view is not correct. The
u-shaped masking curve is a robust and general property of a
number of systems, both simple and complex.

There are two main conclusions to be drawn from this study.
First, there are at least three different methods to produce the

u-shaped masking curve. One method is efficient masking, as
described in Theorem 1. This method requires gradual decay
of the target VRF and seems to require a particular linking hy-
pothesis between the target signal and the percept. A second
method is mask-blocking, whereby a strong target signal pre-
vents the mask from having its effect. This method requires
that lasting traces of the target be able to block the mask sig-
nal to insure that the strongest masking occurs for a positive
ISI. The third method is target-blocking, where the mask signal
prevents the target from producing a strong signal in the target
VRF. This method requires time lags between the target and
mask signals to insure that the strongest masking occurs for a
positive ISI. The robustness of these methods indicates that a
wide variety of models probably produce the u-shaped masking
curve, but have never been explored for that purpose.

The second main conclusion is perhaps more notable: almost
every previously published simulation of the u-shaped metacon-
trast masking curve has used mask-blocking. The single curve
generated by Weisstein (1968), and reproduced in Figure 7B, is
the only exception, and it was apparently not investigated fur-
ther. Given the variety of options for generating the u-shaped
curve, it is surprising that a common method is used in every
model. It is also surprising because at a surface level the mod-
els seem dramatically different. It is not at all obvious that a
model with thousands of differential equations and excitatory
feedback (Francis, 1997) would account for masking in the same
way as a model with a single differential equation and discon-
tinuous masking effects (Anbar & Anbar, 1982). Likewise, it
is interesting that both the Weisstein (1968, 1972) and Bridge-
man (1971, 1977, 1978) models use a similar method to generate
masking curves. Bridgeman’s model was criticized by Weisstein,
Ozog and Szoc (1975), yet the current analysis suggests that the
models (at some level) are similar.

One should not conclude, however, that the four models are
isomorphic. There are substantial and meaningful differences
between the models and, although they use similar quantita-
tive mechanisms, the physical mechanisms that would need to
exist to generate the particular calculations of a given model
differ greatly. Moreover, the current analysis has only explored
the generation of the u-shaped masking curve. There are other
properties of metacontrast masking that are related to the du-
ration of the stimuli, the intensity of the stimuli, the spatial
separation of the stimuli, and a variety of other factors. Many
of these stimulus characteristics interact with the effects of ISI,
and the models exhibit different results under some of these
conditions. It will be important for future work to determine
which masking properties can be accounted for with the model-
free concepts of efficient masking, mask-blocking, and target-
blocking. Only once these properties are understood can we
determine if the components of a specific model add anything
fundamentally new to an account of masking phenomena.

Two masking effects stand out as especially interesting. First,
if a second mask is added to the standard metacontrast display,
it can free the target from the effect of the first mask (e.g.,
Breitmeyer, Rudd & Dunn, 1981). This effect has only been
quantitatively reproduced by Francis (1997), using mechanisms
(inhibitory feedback) that elaborate the masking methods de-
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scribed here. It would be very interesting to find a general
quantitative description of this effect. Second, in the standard
masking paradigm, the measurable effect of the mask varies with
the observer’s task. For example, even under conditions where
observers report they do not see the target stimulus, studies find
that reaction times to a target-mask pair are no slower than to
the target alone presentation (e.g., Fehrer & Raab, 1962). Some
of the effects of the observer’s task have been accounted for by
Bridgeman (1978) and Francis (1997) by hypothesizing that dif-
ferent tasks require different relationships between the measured
percept strength and the VRF. As was already noted, the defi-
nition of this relationship has a large effect on masking curves,
and further exploration along these lines should be illuminating.

Perhaps the most important observation from the current
study is that since the u-shaped masking curve is so easily cre-
ated in a number of different models, the field should generally
conclude that there is nothing special about the u-shape of the
masking curve. The u-shaped masking curve does not, by it-
self, impose a very strong constraint on the types of models
that must be built to account for dynamic visual perception. A
model that solely accounts for the u-shaped masking curve is of
little interest. Comparisons between models need to be based
on the models’ ability to account for other properties of visual
masking and visual perception in general.
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Appendix

Proofs

Proof of Theorem 1:
Equation (1), with equations (2) and (3), is a piecewise linear

first-order differential equation, and it can be analytically solved

in parts. Assuming x(0) = 0, during target presence, 0 ≤ t < τ1,
the solution is

x(t) =
BI

A + CI
(1− exp[−(A + CI)t]) . (16)

During the ISI between target offset and mask onset (τ1 ≤ t <
τ1 + τ2)

x(t) = x(τ1) exp[−A(t− τ1)]. (17)

During mask presence (τ1 + τ2 ≤ t < τ1 + τ2 + τ3), the solution
is

x(t) = x(τ1 + τ2) exp[−(A + EJ)(t− τ1 − τ2)]−
DJ

A + EJ
(1− exp[−(A + EJ)(t− τ1 − τ2)]) . (18)

After the mask (t ≥ τ1 + τ2 + τ3), the solution is

x(t) = x(τ1 + τ2 + τ3) exp[−A(t− τ1 − τ2 − τ3)]. (19)

The integration to compute P can likewise be split into parts

P =
∫ τ1

0
F [x(t)]dt +

∫ τ1+τ2

τ1

F [x(t)]dt+

∫ τ1+τ2+τ3

τ1+τ2

F [x(t)]dt +
∫ T

τ1+τ2+τ3

F [x(t)]dt. (20)

By the definition of F [ ] in equation (5) and the assumption
that F [x(τ1 + τ2 + τ3)] > 0, each of the last three integrals is
the duration of the integration, so this simplifies to

P =
∫ τ1

0
F [x(t)]dt + τ2 + τ3 + T − (τ1 + τ2 + τ3), (21)

so that the partial derivative with respect to ISI, τ2, becomes

∂P

∂τ2
= 0 + 1 + 0 +

∂

∂τ2
T − 1. (22)

Now to find the last differential, it is necessary to find T such
that x(T ) = G for T > τ1 + τ2 + τ3. Substituting into equation
(19) above gives

G = x(τ1 + τ2 + τ3) exp[−A(T − τ1 − τ2 − τ3)]. (23)

Solving for T gives

T = − 1
A

ln[G] + τ1 + τ2 + τ3 +
1
A

ln [x(τ1 + τ2 + τ3)] . (24)

Plugging this into equation (22) and applying the chain rule
gives

∂P

∂τ2
= 1 +

1
A

1
x(τ1 + τ2 + τ3)

∂

∂τ2
x(τ1 + τ2 + τ3). (25)

To find the remaining differential on the right hand side, use
equations (17) and (18) to write x(τ1 + τ2 + τ3) in terms of τ2,
and find that:

∂x(τ1 + τ2 + τ3)
∂τ2

= Ax(τ1) exp[−Aτ2] exp[−(A + EJ)τ3]. (26)



FRANCIS 785

Substituting this calculation into equation (25), dividing out the
common A term, and noting that the remaining terms in the
numerator make up half of equation (18) allows the following
simplification:

∂P

∂τ2
= 1−x(τ1 + τ2 + τ3) + DJ

A+EJ (1− exp[−(A + EJ)τ3])
x(τ1 + τ2 + τ3)

< 0,

(27)
where the inequality holds because the fraction must be bigger
than one. This completes the proof.

Proof of Lemma 1:
By Theorem 1, the strongest masking occurs for ISI τ∗2 when

x(τ1 + τ∗2 + τ3) = G. Using equation (18) set

G = x(τ1 + τ∗2 ) exp[−(A + EJ)(τ3)]−
DJ

A + EJ
(1− exp[−(A + EJ)(τ3)]) . (28)

Using equation (17) to substitute for x(τ1 + τ∗2 ), and then sim-
plifying, one gets

G +
DJ

A + EJ
(1− exp[−(A + EJ)τ3]) =

= x(τ1) exp[−Aτ∗2 ] exp[−(A + EJ)τ3]. (29)

Taking the natural logarithm of both sides and solving for τ∗2
gives

τ∗2 =
ln[x(τ1)]

A
−

1
A

ln
[
G +

DJ

A + EJ
(1− exp[−(A + EJ)τ3])

]
− A + EJ

A
τ3.

(30)
Plugging in for x(τ1) with equation (16) gives the equation in
the form presented in the Lemma 1 statement.

Lemma 2: Varying mask intensity
For the system defined in Theorem 1 and Lemma 1, the ISI for

strongest masking, τ∗2 , shifts to smaller values as mask intensity
increases:

∂τ∗2
∂J

≤ 0. (31)

Proof: One could directly calculate the derivative, but there
is little benefit in such an exercise. Simply note that the last
term in equation (30) must decrease as J increases. Likewise,
DJ/(A + EJ) and (1− exp[−(A + EJ)τ3]) are increasing func-
tions of J , and the natural logarithm is an increasing function,
so the second term, with its minus sign, must also decrease
as J increases. The first term does not vary with J , thus τ∗2
decreases as J increases, thereby indicating that the strongest
masking occurs for smaller ISIs.

Lemma 3: Varying mask duration
For the system defined in Theorem 1 and Lemma 1, the ISI for

strongest masking, τ∗2 , shifts to smaller values as mask duration
increases:

∂τ∗2
∂τ3

≤ 0. (32)

Proof: The proof is of the same style as for Lemma 2. The
second and third terms of equation (30) must decrease as τ3

increases.

Proof of Theorem 2: As in Theorem 1, if F [x(τ1 + τ2 + τ3)] = 0,
then increases in τ2 cannot lead to a decrease in P . Thus, to
complete the theorem, we need only suppose that F [x(τ1 + τ2 +
τ3)] > 0; which implies that the VRF is above threshold at the
offset of the mask.

The proof follows the same course as in Theorem 1, except
the analysis beyond equation (20) needs to consider the new
definition of F [ ]. As before, P can be split into parts:

P =
∫ τ1

0
F [x(t)]dt +

∫ τ1+τ2

τ1

F [x(t)]dt+

∫ τ1+τ2+τ3

τ1+τ2

F [x(t)]dt +
∫ T

τ1+τ2+τ3

F [x(t)]dt. (33)

By the definition of F [ ] in equation (9), and the assumption
that F [x(τ1 + τ2 + τ3)] > 0 this becomes

P =
∫ τ1

0
F [x(t)]dt +

x(τ1)
A

(1− exp[−Aτ2])−

Gτ2 +
x(τ1 + τ2)
A + EJ

(1− exp[−(A + EJ)τ3])

− DJ

A + EJ

[
τ3 − 1

A + EJ
(1− exp[−(A + EJ)τ3])

]
−

Gτ3 +
x(τ1 + τ2 + τ3)

A
−G(T − τ1 − τ2 − τ3)− G

A
, (34)

where T is as defined in equation (24). Calculating the partial
derivative with respect to ISI, τ2, gives

∂P

∂τ2
= x(τ1) exp[−Aτ2]−G−

A

(A + EJ)
(1− exp[−(A + EJ)τ3])x(τ1) exp[−Aτ2]+

exp[−(A + EJ)τ3]x(τ1) exp[−Aτ2]+

G
x(τ1) exp[−Aτ2] exp[−(A + EJ)τ3]

x(τ1 + τ2 + τ3)
. (35)

This can be rewritten as

∂P

∂τ2
= x(τ1 + τ2)

(
1− A

A + EJ

)
+

G

(
x(τ1 + τ2 + τ3) + DJ

A+EJ (1− exp[−(A + EJ)τ3])
x(τ1 + τ2 + τ3)

− 1

)
≥ 0,

(36)
which completes the proof.

Derivation of squared correlation for Bridgeman’s (1978) model:
The correlation between a target only simulation and a target
and mask simulation is (dropping the t notation):

r =
n

∑
xizi −∑

xi
∑

zi√
[n

∑
x2

i − (
∑

xi)2][n
∑

z2
i − (

∑
zi)2]

, (37)
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where xi is the activity of the ith cell for the target only simula-
tion and zi is the activity of the ith cell for the target and mask
simulation. Summations are across all the cells in the network.
The denominator can be rewritten in terms of variances, and
provided S = 0 and the nonlinearity in equation (13) never ap-
plies, the numerator can be rewritten to reflect that zi = xi+yi,
where yi is the activity of cell i for a mask only simulation.

r =
n

∑
xi(xi + yi)−∑

xi
∑

(xi + yi)√
nσ2

xnσ2
z

. (38)

Expanding and simplifying produces

r =
n

∑
x2

i − (
∑

xi)2 + n
∑

xiyi −∑
xi

∑
yi

nσxσz
. (39)

The first pair of terms in the numerator is nσ2
x and the second

pair of terms is n times the covariance between x and y terms,
which can be written as standard deviations and correlation to
get

r =
nσ2

x + nσxσyrxy

nσxσz
. (40)

If σ2
z is written in terms of deviation scores, Xi and Yi, then

σ2
z =

∑
(Xi + Yi)2

n
=

∑
X2

i + 2
∑

XiYi +
∑

Y 2
i

n
=

σ2
x + 2σxσyrxy + σ2

y, (41)

so plugging back into equation (40) and factoring out the com-
mon nσx term gives

r =
σx + σyrxy√

σ2
x + 2σxσyrxy + σ2

y

. (42)

Squaring both sides gives

r2 =
σ2

x + 2σxσyrxy + σ2
yr2

xy

σ2
x + 2σxσyrxy + σ2

y
, (43)

which can be rewritten as

r2 = 1− σ2
y(1− r2

xy)
σ2

x + 2σxσyrxy + σ2
y
. (44)

In equation (14), σT = σx, σM = σy, and rTM = rxy.

Simulations

Figures 2 and 3

The plots in Figures 2 and 3 were created by integrating equa-
tion (1) with Euler’s method using a step size of 0.01. The
results presented in Figure 2 are based on the following param-
eters: A = 0.01, B = 1, C = 1, D = 0.00031, E = 0.002,
G = 0.2, I = 10, J = 10, τ1 = 20, and τ3 = 20. The parame-
ters for the results presented in Figure 3 were the same, except
E = 5.0.

Anbar and Anbar’s model

The simulations of Anbar and Anbar’s (1982) model used γ =
0.3, p = 0.442857143, I = J = 0.000001183, and stimulus du-
rations of 5 time units. These parameters satisfy constraints
identified by Anbar and Anbar for their equations to produce
the u-shaped masking curve. Anbar and Anbar did not report
the parameters in their simulations (except for γ = 0.3), and
their data plots have no numerical values so there is no way
to determine if these are the same parameters as in the origi-
nal study. Nevertheless, the curves look similar and probably
demonstrate the same basic effects.

Bridgeman’s model

A ring of 30 cells was created, with nearby neighbors allowing
interactions. Each cell activity obeyed equation (13). For all
simulations w0 = 0, w1 = 0.3, w2 = 0.3 and w3 = 0.1. For
Figures 5A and B, S = 0.1. For Figures 5C–F, S = 0 and the
simulation artificially set rTM (t) = 0 when calculating equation
(15).

Before presenting any stimuli, a background luminance of
Ii(t) = 50 was presented to all cells and the network equations
were updated for 200 iterations. This resulted in a nonzero
activity among the cells, which could not be calculated analyt-
ically. After the initialization period, a target stimulus with
intensity 22.5 was added to the background luminance and pre-
sented to the middle two cells for two iterations. A mask stim-
ulus of equal intensity and duration was presented to two cells
flanking the target and separated from the target by one cell.

For Figure 5B, masking effects were measured by first present-
ing a target alone and recording the xi(t) values for 12 iterations
after the target onset. The values were then also recorded for a
presentation of the target and the mask. The correlation across
cell activities, r(t), was then calculated for every iteration. The
average squared correlation across all twelve iterations was then
taken as the strength of the target percept. For Figures 5C–F,
the correlation r(t) was calculated by generating separate simu-
lations with the target alone and the mask alone and then using
equation (15) to combine the variance terms from the simula-
tions.

Francis’ model

The simulation results reported here are based on the equa-
tions and parameters previously published in Francis (1997).
The target and mask stimuli were as described there with sim-
ulated luminance values of 1.0 and durations of 16 simulated
milliseconds.

Weisstein’s model

Each cell contains two values (excitation and inhibition), which
obey separate differential equations. The first cell in the target
pathway (cell 1T ) receives input from the target stimulus:

de1T

dt
= A1T I(t)−B1T e1T (45)
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dj1T

dt
= C1T I(t)−D1T j1T .

Here A1T , B1T , C1T , and D1T are parameters. e1T is the exci-
tatory part of the cell’s response and j1T is the inhibitory part
of the cell’s response.

The second cell in the target pathway (cell 2T ) receives input
(both excitation and inhibition) from cell 1T :

de2T

dt
= A2T [e1T − j1T ]+ −B2T e2T (46)

dj2T

dt
= C2T [e1T − j1T ]+ −D2T j2T .

The third cell in the target pathway (cell 3T ) receives input
from cell 2T and inhibition from the mask pathway via cell 2M :

de3T

dt
= A3T [e2T − j2T ]+ − [j2M − e2M ]+ −B3T e3T (47)

dj3T

dt
= C3T [e2T − j2T ]+ − [j2M − e2M ]+ −D3T j3T .

The term [j2M − e2M ]+ is different from Weisstein’s (1972) re-
port of the equations. It was found, however, that when the
e and j terms were switched as Weisstein suggested, that this
term never took nonzero values. Since this term is the source
of masking inhibition, it is necessary that it take nonzero val-
ues. An alternative would be to keep Weisstein’s equations but
switch the parameters for e2M and j2M .

The mask pathway consists of two cells (1M and 2M). The
equations governing these cells are identical to those for 1T
and 2T above, except each T would be replaced by M , I(t)
would be replaced by J(t), and the corresponding parameters
are different.

For the masking curve in Figure 7A, the target percept is
measured as the peak value of [e3T − j3T ]+. For the curves in
Figure 7D, the integral of this term was calculated. For the
curve marked To time 400, the limits of the integral were 0
and 400. For the curve marked To negligible, the integral was
taken from 0 to the time at which the value of [e3T − j3T ]+
equaled the value 1000. The maximum height of the VRF was
nearly 40,000. The To negligible masking curve was essentially
the same shape when the integral was taken from 0 to the time
at which the value of [e3T − j3T ]+ equaled one.

Parameter values were the same as described in Weisstein
(1972) and were: A1T = 1.5, B1T = 0.025, C1T = 1.5, D1T =
0.1, A2T = 1.2, B2T = 0.03, C2T = 2.4, D2T = 0.09, A3T = 0.2,
B3T = 0.009, C3T = 0.0, D3T = 0.0, A1M = 1.5, B1M = 0.025,
C1M = 1.5, D1M = 0.1, A2M = 1.6, B2M = 0.03, C2M = 6.4,
D2M = 0.6.

For all simulations the target and mask luminances were
29.75, and each target and mask was presented for 20 simu-
lated milliseconds. The target stimulus always started at time
zero, and every e and j variable was initially set to the value
zero.

The differential equations were integrated with Euler’s
method using a step size of 0.01.
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