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Abstract

Five simulations of quantitative models of visual backward masking are available on the

Internet at http://www.psych.purdue.edu/∼gfrancis/Publications/BackwardMasking/.

The simulations can be run in a web browser that supports the Java programming language.

This paper describes the motivation for making the simulations available and gives a brief

introduction to how the simulations are used. The source code is available on the web page,

and the paper describes how the code is organized.
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Introduction

Backward masking occurs when a briefly presented visual target stimulus becomes difficult to

see because of the appearance of a mask stimulus that follows the target. Backward masking

has been investigated in thousands of studies with a variety of experimental manipulations

(see Breitmeyer & Öğmen (2000) and Enns & Di Lollo (2000) for recent reviews).

There are three reasons that interest in the properties of masking has been strong for

decades. First, vision scientists use masking to explore the interaction of the target and mask

signals and identify key properties of the mechanisms involved in visual perception. Second,

cognitive psychologists use backward masking as a means of interrupting the processing of

target information. It is known that processing of a target does not stop with the physical

disappearance of the target stimulus, but that processing can continue for at least a second

after the stimulus has turned off (Sperling, 1960). The presentation of a strong mask seems

to halt further processing of the target stimulus as soon as the mask appears. Thus, by

varying the timing between the offset of the target and the onset of the mask, the duration

of processing can be controlled and the details of cognitive mechanisms analyzed. Third, the

properties of masking have been used to investigate aspects of various types of mental diseases

(e.g., Braff & Saccuzzo, 1981; Green, Nuechterlein & Mintz, 1994; Slaghuis & Curran, 1999).

Patients sometimes respond quite differently than normals under masking conditions.

Given the strong interest in masking and the frequency of its use as a tool for investigating

perceptual, cognitive, and behavioral systems, it is perhaps surprising to note that there is

currently no generally agreed upon theory of the mechanisms that are involved in producing

masking effects. There is no shortage of theories, but none are generally believed to properly

account for the key data in the field. Researchers who use masking as a tool to explore other

issues generally have an implicit theory that the mask interrupts processing or interferes

with detection of the target properties. However, these ideas are generally not rigorously

investigated (usually because the researcher is actually interested in something other than

masking per se). Even within the field of masking, theories are often only described verbally,

and sometimes without a description of the underlying mechanisms that would need to exist
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to instantiate a theory.

The field of masking would be enhanced if researchers understood and developed quan-

titative models of masking. A quantitative model is precisely defined and its properties can

be demonstrated conclusively. This specificity allows a model to make predictions and for

those predictions to be tested experimentally. These tests can, in turn, be used to further

the development of the model and so initiate an upward spiral toward the creation of models

that account for large amounts of data. In addition, quantitative models can be analyzed

mathematically to further our understanding of the basic properties of the models. This

latter analysis can help researchers who use masking as a tool to better understand how

masking contributes to the primary effect they are studying.

There are several quantitative models of backward masking. In the 1970s, two neural

network models were investigated and shown to account for several properties of backward

masking. Weisstein (1968, 1972) investigated a dual-channel neural network, while Bridge-

man (1971, 1978) studied properties of a neural network with recurrent lateral inhibition.

Anbar and Anbar (1982) elaborated a model of brightness perception to show that it ac-

counted for some properties of backward masking. Francis (1997) showed that a neural

model of cortical visual processing accounted for many properties of backward masking.

Purushothaman, Öğmen and Bedell (2000) showed that a recurrent neural network could

produce oscillations that accounted for new data in backward masking. Finally, Di Lollo,

Enns and Rensink (2000) showed that a system with reentrant processing could account

for their newly discovered object substitution masking effects. A recent analysis by Fran-

cis (2000) showed that, despite their differences, many of these models work by the same

underlying principles.

Although none of these models account for all of the data on backward masking, many

of them use fairly simple principles to account for much of the experimental data. However,

the contribution of the quantitative models appears to have not been recognized by many

of the researchers that study or use backward masking. For example, Di Lollo et al. (2000)

reported a new masking effect that they call object substitution. Di Lollo et al. suggested

that a key property of this new masking effect ruled out existing theories of masking. The
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key effect was that strong masking could occur for a spatially impoverished mask (four dots

around a target) when the target and mask had common onsets but the mask stayed on after

the target disappeared. The new effect is quite interesting, and is a new experimental finding;

however, Francis and Hermens (2002) showed through computer simulation that some of the

quantitative models of masking can account for the effect without a change in parameters.

Thus, even mathematically sophisticated researchers (Di Lollo and colleagues have developed

their own quantitative models in other contexts) may not recognize the properties of existing

quantitative models of backward masking.

The problem is even more severe in fields that use masking as a tool to study other pro-

cesses. Experimental studies that use masking to investigate some aspect of cognition rarely

make reference to any of the models of backward masking. Likewise, clinical psychologists

who study the effects of masking in mental disorders never use the quantitative models to

explain their findings.

This lack of reference to models is, perhaps, not surprising because the quantitative

models are difficult to understand for individuals without a solid background in mathematics.

Moreover, in many cases the researcher would need to build a simulation of a model in order

to use it to interpret experimental data. Building a simulation is a nontrivial task that can

be a source of frustration even for researchers who have received formal training in model

simulation. When someone is using masking as an experimental tool to investigate something

else, it is perhaps unreasonable to expect them to assign resources toward development of a

computer simulation of quantitative models of backward masking.

A recent study by Francis (2000) developed computer simulations of several quanti-

tative models of backward masking. Most of these simulations were written in the Java

programming language, so they can run on a variety of computers and they can be eas-

ily distributed in web browsers on the Internet. In an effort to promote understanding

of the quantitative models of backward masking, I have created a graphical user interface

that allows anyone to use these models. The model simulations are available on the web

at http://www.psych.purdue.edu/∼gfrancis/Publications/BackwardMasking/. Use of

the models requires a Java-enabled web browser (this includes most web browsers) and ac-
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cess to the Internet. Full source code for the programs is also available as a download from

the web page.

The desired effect of making the model simulations widely available is two-fold. First,

it is hoped that researchers who want to learn more about quantitative models will use the

simulations to help them better understand the properties of the models. There is sometimes

a bootstrapping problem with model comprehension, where it is difficult to understand

a model without a simulation, but it is nearly impossible to build a simulation without

understanding the model. Having an example of a model simulation available might make it

easier to understand the model properties. Second, it is hoped that having the simulations

readily available will pique the interest of experimentalists to see if the models can account

for properties of their data. Such interest may motivate an experimentalist to further explore

the characteristics of the models and lead to more interpretations of experimental results

with quantitative modeling.

Models available

The models available on the web site include only those models that do not require excessive

amounts of computation. In general, a few minutes was considered an upper limit on how

long people would wait before getting results from a simulation run. Models that meet

this requirement includes those discussed in Weisstein (1972), Bridgeman (1978), Anbar and

Anbar (1982), Francis (2000), and Di Lollo et al. (2000). Not included are models by Francis

(1997) and Purushothaman et al. (2000) because these models often must run for hours or

days to generate results of interest.

A Java applet resides on the web page to display buttons with names for the different

models. Clicking on one of the buttons will cause a new window to appear with a graphical

user interface that allows the user to modify stimulus parameters and model parameters. For

example, Figure 1 shows the window that appears after clicking on the Reentrant processing

button. (All screen shots were created while running the simulations on a computer running

Mac OS X, but the programs also work on MS Windows and Unix systems with web browsers
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that support Java.)

- Figure 1 -

Each simulation has the same type of GUI. The window is given a title that indicates

which model is being simulated. The left side of the window contains information about an

independent variable. This is the variable that is systematically varied during a simulation

run. After every run of a simulation, a graph is shown that plots the model’s measure of the

target percept strength as a function of the individual variable. Target percept strength is

a model measure that corresponds to the visibility of the target. In different experiments it

would correspond to target brightness, percent correct detections, percent correct discrimi-

nations, and so on. The right side of the window lists each model parameter and stimulus

parameter that can be set by the user. The bottom of the window lets the user set details of

the simulation run. The checkbox labeled Clear plot determines whether the next simulation

run should be displayed with previous simulation runs or if it should generate an entirely

new data plot. The text field labeled Simulation name allows the user to enter a name

for the next simulation run. This name appears as a label in the legend of the data plot.

Finally, clicking on the Start simulation button starts the simulation for the given set of

parameters. As the simulation proceeds, this button’s label is updated to roughly indicate

the simulation’s progress.

For every parameter, there is a button labeled Description. When this button is pressed,

a window appears that provides a textual description of what the parameter corresponds to

in the model and/or simulation. This information is provided to make it easier for the user

to link the parameters in the simulation with the details of the models given in their original

publications.

The worth of the simulations can be described by example. The first example will focus

on the reentrant processing model of Di Lollo et al. (2000) because it is a new model and

there is currently substantial interest in the issues raised by Di Lollo et al. A key property

of the model of Di Lollo et al. (2000) concerns the effect of varying the number of distracter

items when the target is presented. In the model this is coded by the parameter n. Figure 2a
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shows the data plot that appears after giving the simulation run the name n=4 and clicking

on the Start simulation button. Additional simulation results are added to the graph by

changing the parameter n, changing the simulation name, and unchecking the Clear plot

checkbox. Figures 2b-d show the model output as simulations for other values of n are

added to the graph.

- Figure 2 -

Figure 2d is a replication of the results reported by Di Lollo et al. (2000) in their Figure

15A. It shows the effect of varying mask duration for different numbers of distracters in the

target field. The main result is that there is an interaction of set size and mask duration.

The curves in Figure 2 look slightly different than the curves in Figure 15A of Di Lollo et

al., but this is because the values of mask durations are slightly different in the two sets of

simulations.

Because the graph generated by the program is not of publication quality, the program

also provides the simulated data in a plain text format. A menu option called Show Data

is available on each plot window. Selecting the Show data points menu item displays a

new window that lists the data in a textual format, as in Figure 3. These data can be

selected, copied, and pasted into other programs (e.g., word processor, spreadsheet, text

editor). Because columns are tab-delimited, pasting the selected data into a spreadsheet

should cause each number to be placed in its own cell. The data can thus be ported into the

user’s favorite plotting program to create higher quality graphs. The data an also be ported

into a statistical analysis program for comparison to experimental data.

- Figure 3 -

The default parameters when a simulation is started always correspond to the parameters

used in the original description of the model. However, a user can change these parameters

to explore the abilities of the model in other situations. For example, although the reentrant

model of Di Lollo et al. (2000) was originally designed to account for effects of mask duration

with common onset masking and variability in the number of distracters with the target, a
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researcher might be interested in seeing how it responds to variations in the SOA between the

target and mask. A common experimental finding is that if the mask stimulus is weak relative

to the target stimulus, the mask has its biggest effect at an intermediate SOA value. When

target percept strength is plotted against SOA, the curve takes a u-shape. Accounting for

the u-shaped masking function is considered a primary issue in the field of backward masking

(Breitmeyer & Öğmen, 2000; Francis, 2000).

Figure 4a shows the behavior of the model when the independent variable is SOA instead

of mask duration. All the other parameters were the default values when the simulation

started. The model predicts modest masking for common onset of the target and mask and

no masking for other SOAs. This finding does not provide evidence against the model of

Di Lollo et al. (2000) because it was designed to explain other data sets. Interestingly,

with a change of parameters the model does seem to be able to produce u-shaped masking

functions. By setting the target intensity to be 2.0 and λ = 0.95, the model produces the

curve in Figure 4b, which shows the strongest masking occurs at intermediate SOA values.

- Figure 4 -

This simulation finding is interesting because it suggests that the Di Lollo et al. (2000)

model, which was designed to account for common onset masking, might also be able to

explain effects when the mask onset comes after the target offset. Of course, further research

is needed to explore this possibility, and a simulation model is now available to support that

research.

Similar investigations can be made with the other model simulations. For example,

Bridgeman’s (1978) model uses recurrent lateral inhibition across a set of cells. The model

includes longer time delays for inhibitory signals that must travel longer pixel distances. A

researcher might wonder if the time delays are necessary to produce the model’s main effect

(the existence of a u-shaped masking function). This can be explored in the model by setting

the weights for distances greater than one pixel equal to zero. With zero signal being sent

for the longer distances, such a system will have no time delays. Figure 5 shows the masking

functions produced for the default parameters and for the simulation without time delays.
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Both produce a u-shaped masking function, which indicates that the time delays are not

critical to producing the u-shaped masking function.

- Figure 5 -

As a final example, Francis (2000) identified a novel method, called efficient masking,

for producing a u-shaped masking function. The default parameter values are those used

in Francis (2003) to relate the model to experimental data. Figure 6a shows the kind of

masking function produced by the model.

- Figure 6 -

A researcher might wonder if the efficient masking model could also account for the

properties of common onset masking studied by Di Lollo et al. (2000). The answer is yes

if one is willing to hypothesize that increases in set size lead to distributed attention which

makes the mask signal have a larger impact on the target signal (see Francis & Hermens,

2002). Figure 6b shows simulation results that demonstrate this property.

Source code

Although one can use the simulation graphical user interface to vary all of the model param-

eters and to vary the stimulus, there are some situations where modification of the source

code will be required. For example, one of the parameters in the model of Di Lollo et al.

(2000) is interpreted as reflecting the rate at which items are searched in a visual display.

For some of their simulations this rate was changed within a run of the simulation to indi-

cate pre-cue and post-cue rates. The simulations reported here cannot duplicate this effect

because the search rate can only be one value during a run of the simulation. However, it

should be relatively easy for a programmer to modify the source code and allow for this

possibility. More generally, a researcher may want to modify one of the models, which will

require changes to the programming of the simulation. Thus, a discussion of how the source

code is designed may be worthwhile.

The simulation programs are written in the Java programming language. They can be run
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as stand alone programs or, as has been discussed so far, in a web browser over the Internet.

Java is an object oriented language, with each object defined as a class that contains data

and methods that manipulate the data.

Many of the classes define fairly general objects, for example, CloseableFrame.java defines

a class that provides a window that closes upon request. Other classes do fairly complex

operations. For example, SimPlotImage.java takes results from a simulation, draws an image

of a data plot, and displays the image in a window.

The classes of interest for researchers who want to elaborate or modify the simulations are

usually named after the researcher(s) who created the models (the one exception is for the

Efficient Masking model, which is not named after Francis (2000) in order to avoid confusion

with a different model described in Francis (1997)). Thus, the classes are: AnbarAnbar.java,

Bridgeman.java, DiLolloEtAl.java, EfficientMasking.java, and Weisstein.java. Each of these

classes defines the variables, parameters, and equations that make up the simulation of the

model.

Every simulation program has a common design. The Java programming language has

a convenient method of organizing similar types of programs using abstract classes. An

abstract simulation class was defined and called Simulation.java. The abstract class defines

variables and methods that must be part of every simulation. The classes that define a

particular model extend the abstract class and immediately acquire the data variables defined

by the abstract class. Each particular model class must also provide a definition for each

method defined in the abstract class. This insures that each particular model has the basic

properties of the abstract class.

The advantage to this arrangement is apparent in the design of the graphical user interface

(SimulationGUI.java). The type of model being simulated need not be specified for the

graphical user interface. Since every model is a version of the simulation class, certain

variables always exist and certain methods can always be called. Thus, if a new model

simulation is created and it is defined as an extension of the abstract simulation class, the

graphical user interface will automatically work with the new model simulation.

Thus, to make a new model simulation, it is only necessary to define a class along the lines
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of one of the existing models. This involves identifying the parameters for the model and

identifying the model calculations. Of course, knowledge of the Java programming language

is necessary to make these types of changes.

Conclusions

A set of programs that simulates five models of backward masking is available on the In-

ternet. The programs can either be run through a web browser, or the source code can

be downloaded, compiled, and run on a local computer. The programs provide a common

interface for interacting with each simulation.

The model simulations will assist researchers interested in backward masking to explore

the properties of these models and to thereby gain a better understanding of the types of

interactions that may be involved in masking. The goal is to allow the properties of the

quantitative models of backward masking to be understood and used by more researchers

in the field of masking, experimentalists who use masking as a tool to study other aspects

of cognition, and psychiatrists who relate masking effects to various mental conditions. By

removing the need for these researchers to create their own simulations of the models, perhaps

the researchers will be motivated to use quantitative models to generate novel interpretations

of experimental data.
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Figure Captions

Figure 1. The graphical user interface for interacting with the reentrant processing model.

The user interface is the same for every model.

Figure 2. Simulation results for the reentrant processing model. After each run of the

simulation, a data plot is produced. Figures (a)-(d) show the build up of plots as new data

is added to previous simulation results. The final plot, (d), is a replication of simulation

results reported by Di Lollo et al. (2000).

Figure 3. To produce better plots or to further analyze the simulated data, selecting the

menu option Show data from each plot opens a window with a textual listing of the data

points. The data can be selected, copied, and pasted into other programs.

Figure 4. Simulation results when the reentrant processing model is tested under new con-

ditions, varying the stimulus onset asynchrony (SOA) between the target and mask stimuli.

The results with the original model parameters are shown in (a) and the results with a differ-

ent set of parameters are shown in (b). The model can produce u-shaped masking functions

under some conditions.

Figure 5. Simulation results for the recurrent inhibition model. The two curves differ

depending on the weight given to spatial interactions beyond a cell’s nearest neighbors. The

curve with filled circles marking points is from a simulation with the weights set equal to

zero. Setting these weights to zero also has the effect of removing time-delayed inhibition in

the model. As the simulations show, u-shaped masking occurs regardless of this property of

the model.

Figure 6. Simulation results for the efficient masking model. (a) shows a u-shaped masking

function produced by the default set of parameters. (b) shows that the efficient masking

model can match the basic properties of object substitution masking (see Figure 2d for

comparison).
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