
Int. J. Human-Computer Studies (2002) 56, 000–000
doi:10.1006/ijhc.2002.0527
Available online at http://www.idealibrary.com.on

Applyingmodels of visual search tomenu designy

Baili Liu

Department of Computing and Software Systems, University of Washington Bothell,

Box 358534, 18115 Campus Way N.E., Bothell, WA 98011, USA.

email: bliu@bothell.washington.edu

Gregory Francis
Department of Psychological Sciences, Purdue University, USA

Gavriel Salvendy
School of Industrial Engineering, Purdue University, USA

(Received 25 March 2001 and accepted in revised form 23 January 2002)

The Guided Search (GS) model, a quantitative model of visual search, was used to
develop menu designs in a four-step process. First, a GS simulation model was defined
for a menu search task. Second, model parameters were estimated to provide the best fit
between model predictions and experimental data. Third, an optimization algorithm
was used to identify the menu design that minimized model predicted search times based
on predefined search frequencies of different menu items. Fourth, the design was tested.
The results indicate that the GS model has the potential to be part of a system for
predicting or automating the design of menus.
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1. Introduction

Menu search tasks are repetitive tasks performed by millions of people every day. Many
empirical studies have identified factors such as organization (grouping or ordering),
navigation (breadth vs. depth), layout, graphics (using icons), naming and practice
(Norman, 1990) that are related to search efficiency in menu search tasks. However, it is
often difficult to transfer these empirical findings into design decisions during the
creation of a specific menu. Guidelines resulting from these empirical findings
sometimes contradict each other. It is not clear how to set priorities among different
guidelines because the relative impact of different factors is not generally known and
methods to systematically apply the findings are not available.

1071-5819/02/000000+00 $35.00/0 # 2002 Elsevier Science Ltd.

3B2v7:51c
GML4:3:1 IJHC : 20020527� Prod:Type: com

pp:1224ðcol:fig::Fig 2 colour for onlineÞ
ED:Ravi=Br

PAGN: thilakam SCAN: shobha

yThis work was carried out at the School of Industrial Engineering, Purdue University.



Computational models that predict human–computer interaction (HCI) task
performance could become, once validated, very useful in evaluating design alternatives
or even automating design efforts (e.g. Francis, 2000; Meyer, 2000). Menu search, like
other information-processing tasks, includes perceptual, cognitive and motor compo-
nents. Quantitative models that could predict motor performance based on the law of
Fitts (1954) have been used to optimize hierarchical menu layout (e.g. Francis, 2000) to
reduce performance time. User models that treated menu search as a lexical-semantic
search task were used to investigate display-based competence, highlighting the role of
the visual display as an aid to a user’s performance (e.g. Howes & Payne, 1990; Payne,
Richardson & Howes, 2000). Cognitive models were developed to investigate user
strategies in computer menu search (Hornof & Kieras, 1997, 1999).
In our study, we approached menu search as a perceptual search task in order to

investigate the effect of the perceptual factors on menu search performance. By holding
constant the influence of the cognitive component and varying the perceptual
component, we were able to experiment with different design alternatives. The result
of our study provides insight in understanding the menu search process and highlights
the importance of visually discriminable designs.
The Guided Search (GS) model (Cave & Wolfe, 1990) is a model of visual search

from the perceptual literature that quantitatively describes the role of parallel and serial
processing in visual search. Visual search is a part of menu search, so variations in
visual search times should also affect menu search times. A simulation model that could
quantitatively predict visual search time for a menu search task was created with the GS
model. A quantitative model that predicts visual search time in a menu search task can
be used to identify designs that are optimal with respect to the model factors. The
existence of such a model also provides a means to test the relative importance of the
model-based perceptual factors on search performance in a menu search task. This was
achieved by using the model to generate comparative menu designs through an
optimization approach. These comparative designs were then tested in controlled
experiments.
This discussion is organized as follows: first, the GS model of visual search in the

perceptual literature is reviewed. Then, a method for defining the GS model for a menu
search task and estimating the model parameters is described and we show how the
model can be used to identify menu designs that optimize expected search time. Finally,
two experiments testing the validity of the GS model are presented.

2. The guided search model

In a typical visual search task, a target is searched for among a number of distracters.
The total number of displayed items is known as set size. On each search trial, a target is
presented, then a display is shown. Subjects respond immediately after the target is
found. Reaction time (RT) to respond to finding the target is recorded. RT is usually
plotted as a function of set size and is used to infer search mechanisms.
A shallow RT vs. set size slope usually implies parallel search and vice versa. One

theory that prominently distinguished parallel and serial searches was Feature
Integration Theory (Treisman & Galade, 1980), in which feature search (where a
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target is unique on a single visual feature, for example, the target is red but all the
distracters are blue) and conjunction search (the target does not have a unique visual
feature thus requiring combined processing of at least two visual features to identify the
target from the distracters) were identified. But the strict serial/parallel dichotomy has
been questioned. After combining more than 1 million search trials from 2500 visual
search experiments, Wolfe (1998) found no evidence of a dichotomous division of RT
vs. set size slopes. This led to the proposal of an alternative visual search model: the GS
model. The GS model identified parallel and serial stages that are involved in every
visual search task. The parallel stage guides the serial stage by choosing the elements to
be processed by the subsequent serial stage. The degree of how useful parallel
information is in guiding the serial stage determines search efficiency. The GS model
identifies efficient vs. less efficient searches rather than serial vs. parallel searches.
Simulations of the GS model showed that it reproduced visual search data in a number
of different visual search experiments (Wolfe, 1994). Details of the GS model were first
given in Cave and Wolfe (1990), with modifications given in Wolfe (1994) for GS2 and
in Wolfe and Gancarz (1996) for GS3. The later versions of the GS models take into
consideration an eccentricity effect.
The descriptions and formula below show how activation values are calculated for

the displayed items. In the parallel stage, separate feature maps that record detection of
basic visual features such as color, orientation, and size are created. This process takes
place pre-attentively and in parallel. An activation map is then created as a
combination of activations from the separate feature maps. A full model that defines
the metric of each basic visual feature is needed for calculating the activation values.
The metric of each feature map corresponds to the just noticeable difference (JND)
value for each category within that feature map. For example, in the orientation feature
map, there are four broadly tuned categories: steep (for �4585x5458), shallow
(�9085x5458 and 4585x5908) right (085x5908), and left (�9085x508). The
activation values for each element in each feature map are determined based on the
metric. Activation of element i in an individual feature map is defined as:

Ai ¼ exp
p

n � 1

Xn

j¼1
j 6¼i

jfi � fj j
jdi � dj j

0
BB@

1
CCA� qj fi � tj;

where Ai is the activation at element i, p the weight for bottom-up, q the weight for top-
down, fi the activation value of element i, fj the activation value of element j, t the
activation value of target, n the number of items in the visual display, di the position
value at element i and dj the position value at element j.
It includes a top-down component and a bottom-up component. The bottom-up

component is defined as the exponential of the average absolute difference between
activation values for element i and all the other elements in the display. The absolute
difference for each pair of elements is weighted by their distances so that the larger the
distance between element i and element j, the less influence element j has on the bottom-
up activation for element i. The bottom-up component is raised to an exponential,
which generally makes it more influential than the top-down component in determining
the activation values for the displayed elements. The top-down component is calculated
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as the absolute difference between the activation values that are expected for the target
and element i in that specific feature map. It relates to how different the stimulus
elements’ features are from the designated target. The weights for top-down and
bottom-up components define the relative effectiveness of the two components. Total
activation for element i in a specific feature map is the weighted subtraction of top-
down from the bottom-up activation because the top-down activation is implemented
as inhibitory. Generally, the more distinctive an item is from the others in the display,
and the closer it resembles the target, the higher the total activation will be for this item.
In the serial stage, the mechanism of operation is that only a limited part of the visual

field is examined at one time. The GS model assumes that the order in which elements
are processed is determined by their summed activation values. Search starts with the
element having the highest activation value and moves to elements having progressively
lower activation values, continuing until the target is found. In the case that the element
with the highest activation value is the target, this leads to a direct search. Search time is
linearly related to the number of steps for locating the target. Assuming the cycle time
for processing each element is fixed, the search time could be computed as the cycle time
multiplied by the number of steps in the serial stage plus the overhead search time.

3. GS simulation model for amenu search task

The GS model was applied successfully in predicting search time in perceptual search
tasks. Visual search is also part of a menu search, although the latter differs
considerably from a pure visual search task. We are interested in simulating the GS
model on a menu search task. Although the GS model itself may prove to be inadequate
in predicting menu search time, it allows us to assess the relative importance of the
model-based perceptual factors in determining menu search efficiency.

3.1. CALIBRATION OFAGS SIMULATION MODEL FORA MENU SEARCH TASK

To accomplish our goal, a simulation model for a menu search task needs to be
constructed. This is the first crucial step toward testing the validity of the GS model on
menu search. It forms the basis on which the visually discriminable designs are later
generated. The process of setting up a GS simulation model for a menu search task
included the following steps: (1) selecting model parameters, (2) collecting the
experimental data from menu search trials and (3) using the experimental data to
quantify free model parameters that need to be estimated.

3.1.1. Model parameters. As described in the previous section, several parameters are
needed to define the simulation model. The model parameters depended on the
selection of visual features used in the menu search task. In our menu search task, menu
options were made of letter strings that varied in length and color and were displayed
on a vertical menu. Each string consisted of the letter ‘‘A’’ repeated three (AAA), six
(AAAAAA) or nine (AAAAAAAAA) times. The GS model contained three
parameters that defined the values given for short, middle and long lengths. Each
menu option was one of four colors: red, blue, black or gray. These four colors were
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chosen because of their relative discriminability. The GS model included four
parameters, one for each color.
The GS model also included two parameters that define the top-down weights for

length and color information that guide the search process for a known target.
Similarly, there were two parameters that weighted the bottom-up information for
length and color.
Finally, the GS model included two parameters that scale the output of the model to

fit the numerical search times and two other parameters that account for variability in
response times. These parameters are overhead time, cycle time, noise mean and noise
standard deviation. Overhead time was added to the search time prediction for each
search trial. Cycle time was defined as the time for processing each item in the serial
stage. Noise mean and noise standard deviation were used to represent the random
errors in the processing of parallel information and were added to the total activation
for each displayed element. The first 11 parameters are free parameters that need to be
estimated by the experimental data. The final four parameters are not directly relevant
for the current study because the ultimate goal is to specify the relative differences in
search times rather than the absolute differences. For completeness, our procedure did
estimate these parameters.
We decided not to include shape characteristics in the simulation model because

shape representation is not fully understood. For example, we did not know how to
define the bottom-up activation of a word that could be of any combination of different
letters. Because of this, same-letter strings (AAA, etc.), instead of words were used as
menu options. Using words as menu options would have caused the model to fit
additional variability that it could not explain. However, the model could be tested on
menu search tasks with words as menu options in later experiments and thus allow us to
see how the additional variability in the more realistic menu search tasks would
influence the validity of the GS model.

3.1.2. Experimental task. The data used to define the model parameters were gathered
by having users search for a target item in a variety of different menu designs. Different
menu designs have different combinations of menu option lengths, menu option colors
and relative positions of menu options. Menu options were presented vertically on a
menu panel that was light gray in color (a typical menu background color). The lengths
of menu options were three, six or nine letters (AAA, AAAAAA or AAAAAAAAA).
The colors of the menu options were red, blue, black or gray. The number of items on
the menu ranged from 3 to 20, which is within the typical range of set sizes for menu
search tasks. The target was unique from all distracters in each search trial. Three
hundred such menu search trials were randomly generated. A screen snapshot of the
menu used in a search trial is presented in Figure 1. Each user went through the 300
search trials in the same order.
On each trial, a user was asked to select a given target from a list of menu options

displayed on a single vertical menu. Unlike a routine menu search task, each search trial
in this experiment was carried out in the ‘‘search and select’’ paradigm (Armstrong
Laboratory, 1994). First the user clicked on a ‘‘Target’’ button to display the target
menu option. The user studied the target to memorize it and its visual features. Then,
the user clicked on a ‘‘Find/Found’’ button to display the menu. As soon as the target
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was visually located on the menu, the user clicked on the ‘‘Find/Found’’ button again
to indicate that the target was spotted. Finally, the user moved the cursor to the target
location in the menu and clicked on it.
The times spent in reading the target, visually searching for the target and moving to

the target were recorded separately by the computer. The visual search time was
recorded as the time between clicking the ‘‘Find/Found’’ button to show the menu
options and clicking the ‘‘Find/Found’’ button to indicate identification of the target.
The computer’s temporal resolution is accurate to the millisecond.

3.1.3. Participants. Ten participants were recruited for the experiment. All 10
participants were students from engineering departments at Purdue University. Eight
were male; two were female. They were natives of different countries. The mean age of
the 10 participants was 26.0, and the standard deviation of their ages was 5.09. All
participants reported normal color vision.

3.1.4. Model fitting. The average search times across the 10 participants in the 300
random search trials were used to fit the model predictions. Parameter fitting was done
with a variation of a hill-climbing method. The GS model was implemented with a
computer program written in Matlab. With a given set of model parameters, the
properties of the display and the target on a given trial, the model can compute a

Figure 1. Sample screen for a menu search trial in model calibration.

B. LIU ET AL.6



prediction of the visual search time for locating the target. This prediction was
computed for each of the 300 search trials. The predicted search times were then
correlated with the experimentally measured search times, and the squared correlation
coefficient was computed. A single model parameter was then changed, and the
predicted search times for all 300 displays were computed again. These predicted search
times were used again to calculate the squared correlation coefficient with the
experimental search times. If the parameter change led to an increase in the squared
correlation coefficient, the change was kept. If the parameter change led to a decrease in
the squared correlation coefficient, the parameter change was undone and the model
parameters were returned to the original state. This process iterated until it seemed that
no further changes in model parameters led to an increase in the squared correlation
coefficient.
The model parameters were first set manually with a similar process described above.

However, some judgments were used. For example, it was considered that the difference
between red and gray would be bigger than the difference between red and blue. The
purpose of the manual adjustment of model parameters was to place the model
parameters in a range that seemed to lead to a large squared correlation coefficient. The
computational algorithm (hill-climbing) was then used to fine-tune the manually set
parameters. This guaranteed that the final set of parameters gave at least a local
maximum of the squared correlation coefficient. The program for fitting the parameters
ran for about 14 h, which included 100 800 iterations of parameter changes, with about
0.5 s for calculating each squared correlation coefficient for a set of model parameters.
Because of the imperfection of the fitting method used, it is not guaranteed that the
final set of parameters for the simulation model was the absolute best set of parameters.
Instead, we only claim that a working simulation model was constructed to account for
a large part of the variation in the users. (Table 1)

3.1.5. Results and discussion. In the manual fitting process, the highest squared
correlation coefficient that was obtained by adjusting the model parameters was 0.4858.
After running the computer search, model parameters were slightly modified and the
squared correlation was raised to 0.4966. The simulation model could account for
about 50% of the variation in the user data. This means the correlation between the
predicted search times and the experimental search times for the 300 random search
trials was above 0.70. It is likely that the GS model is not fitting noise in the data, but
rather meaningful patterns as predicted by the model. The resulting set of simulation

Table 1
Simulation model parameters for menu search task

Anchor parameter Color parameter Length parameter Weight parameter

overhead ¼ 50 red ¼ 10:2 Long ¼ 1 topdown color ¼ 3:8
cycle ¼ 25 blue ¼ 7 middle ¼ 5 topdown length ¼ 2
noisemean ¼ 0:2 black ¼ 2 short ¼ 4 bottomup color ¼ 5
noisestd ¼ 0:05 gray ¼ 2:9 bottomup length ¼ 4
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model parameters is listed in Table 2. The formulas to calculate total activation for each
menu option based on these parameters would be

AiðtotalÞ ¼ AiðcolorÞ þ AiðlengthÞ;

AiðcolorÞ ¼ exp
p

n � 1

Xn

j¼1
j 6¼i

jfi � fjj
jdi � djj

0
BB@

1
CCA� qj fi � tj;

where n ¼ 3, . . ., 20, p ¼ 5 (weight for bottom-up color information in the model),
q ¼ 3:8 (weight for top-down color information in the model) and fi, fj, t correspond to
the activation values of element i, j, and the target in the color feature map,
respectively.

AiðlengthÞ ¼ exp
p

n � 1

Xn

j¼1
j 6¼i

j fi � fjj
jdi � djj

0
BB@

1
CCA� qj fi � tjði 6 ¼jÞ;

where n ¼ 3, . . ., 20, p ¼ 4 (weight for bottom-up color information in the model), q ¼ 2
(weight for top-down color information in the model), fi, fj, t correspond to the
activation values of element i, j and the target in the length feature map, respectively.
In the calculation of an activation value, the magnitude of a parameter only matters

relative to other parameters. For example, the length parameters reveal that the long
stimulus feature is notably different from the middle and the short stimulus features.
Thus, a long menu option would stand out in a display of otherwise short menu
options, and would be only slightly less obvious in a display of middle-length menu
options. However, a middle-length menu option would not stand out nearly as well
among a set of otherwise short menu options. Likewise, a red or blue menu option will
stand out relative to a set of black and/or gray options. However, red and blue menu
options are not as easily discriminated, and black and gray menu options are difficult to
distinguish. The weight parameters for both the top-down and the bottom-up
components indicate that for equal feature differences among the display features, a
difference in color is going to be more distinctive than a difference in length. This is

Table 2
Menu options and their search frequencies in experiments 1and 2

Search frequency 10 9 4 3 2

Menu labels ‘‘submarine’’ ‘‘roadhouse’’ ‘‘professor’’ ‘‘heaven’’ ‘‘rubber’’
‘‘ground’’ ‘‘map’’ ‘‘horseback’’ ‘‘minute’’ ‘‘circle’’
‘‘beauty’’ ‘‘butterfly’’ ‘‘log’’ ‘‘war’’
‘‘air’’ ‘‘insect’’ ‘‘toy’’ ‘‘tip’’

‘‘bed’’
‘‘ear’’
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especially the case for the bottom-up component because the feature differences in the
bottom-up components are raised to their exponentials in the calculations.
Because the fit was based on the squared correlation coefficient, there is no necessary

quantitative match between the absolute predicted and experimental search times. The
model, in its current form, only predicts the relationships between search times under
different conditions. Finally, the model does not predict variability in search times
among individual users because we averaged over the users and each user saw a trial
only once. If this information is important for a particular application of the model,
one would simply modify the procedure we used to ensure that the model parameters fit
those details.

3.2. GENERATION OF COMPARATIVE MENU DESIGNS

We are going to test the adequacy of the GS model in predicting menu search time by
comparing two distinctive menu designs generated by the model. One design is
predicted by the GS model to have fast search times, the other design is predicted by the
model to have slow search times. These two designs were both generated through a
computerized search among a large number of design alternatives using a simulated
annealing algorithm. This section describes the process and the results of generating
these two menu designs. These two designs are utilized in the later experiments.

3.2.1. Problem definition. Generation of the model designs was taken as an
optimization problem, with the objective function of minimizing or maximizing
average search time. The approach is similar in style to Francis (2000), where
minimization of predicted movement time was found to improve search through a
multifunction display. In the present experiments, average search time was defined as
the frequency-weighted sum of search times for each option in the menu. The frequency
weights were predefined search frequencies for each menu option. The predefined
frequencies were set arbitrarily so that some menu options were searched more
frequently than other menu options. The labels and the search frequencies associated
with each menu option are given in Table 2. The labels were picked from common
English words; there should be little difference in familiarity or difficulty associated
with these words. The lengths of labels were three, six or nine characters. These lengths
correspond to the parameters defined for the length feature in the GS model. Problem
definitions for the generating the menu designs generated by the GS model are
summarized in Table 3.

3.2.2. Model generated menu designs. A simulated annealing (SA) algorithm was used
to generate the model designs. SA is a probabilistic hill-climbing algorithm that is
conceptually related to the crystallization of materials when they are first heated to high
temperature and then cooled down slowly (Aarts & Korst, 1989). Computer programs
in Matlab were written to implement the GS model calculation in the SA algorithm.
For any given menu design with color and location of each label specified, the GS
model could give a prediction of search time for each menu option when it is the target.
A frequency-weighted sum of search times for all menu options can then be calculated.
For generating the model predicted fast design, the SA program started with a random

APPLYING MENU DESIGN 9



design, calculated its average search time, then picked a menu option, swapped its
location with another randomly picked menu option in the design, reassigned their
colors and calculated the average search time again. If average search time was
decreased, the change in design was kept; otherwise, it was accepted probabilistically,
which allows the search to jump out of locally optimal solutions that are not the same
as the global optimal solution. The probabilistic acceptance gradually becomes more
stringent.
The time that the optimization program ran was determined by the setting of the SA

parameters. These parameters determined how fast the temperature would cool down,
that is, how soon the optimization process would converge to a local optimal solution
and how wide the range of the random search process would be. The approximate time
for generating each menu design by the SA program was about 7 h, which included
about 252 000 iterations with 0.1 s for calculating the average search time for each
random design. Ideally, if the temperature is decreased logarithmically and the SA
program is set to run for a long enough time, it will be able to find the globally optimal
solution. However, because of the limits of time and CPU speed, it is not guaranteed
that the SA program would find the global optimal solution based on the optimization
problem defined. Despite these indeterminacies, the model predicts substantial
differences between the comparative designs generated by the SA program.

3.2.3. Characteristics of model generated menu designs. We used the above approach to
generate two types of menu designs that the model predicts should have very different
search times. Design layouts for model predicted fast and model predicted slow menu
designs are shown in Table 4. To understand the model predicted differences in the
designs, consider the menu label ‘‘professor’’. The predefined search frequency of this
label is 4. In the predicted fast design, when searching for the target ‘‘professor’’, which
is located on top of the menu and with a red color, its bottom-up color activation

Table 3
Definitions of optimization problems for generating menu designs

Menu
design

Problem definition Objective function Problem size

Model
predicted
fast design

Model
predicted
slow design

Assigning 20 labels,
defined by [Fi, Li] (i ¼ 1, ..20,
Fi is search frequency and
Li is length of the
ith label) to 20 menu
locations.
Each menu
location could have
one of the 4 colors
(red, blue, gray, black)
be assigned to it.

Minimize SðFi 	 Ti)
i ¼ 1; ::20, where Fi is the
search frequency of menu
i, Ti is the model prediction
time for searching menu item i
in the specified display
Maximize SðFi 	 Ti)
i ¼ 1; ::20 where Fi is the search
frequency of
menu item i, Ti is the model
prediction time for
searching menu item i in
the specified display

420
 20!

420
 20!
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should be calculated based on the formulas given in Section 3.2. That is, take the
absolute difference in color activation between menu option ‘‘professor’’ and each
of the other menu options divided by the corresponding distances in locations be-
tween ‘‘professor’’ and each of the other menu options and add them up. The activation
value for each color is specified in the model parameters, so the result would
be 0=1þ 3:2=2þ 3:2=3þ 3:2=4þ 3:2=5þ 7:3=6þ 7:3=7þ � � � ¼ 25:524. Multiply this
number by the bottom-up weight for color (p ¼ 5), divide it by the number of menu
options in the design minus 1 (n � 1 ¼ 19) and raise it to its exponential (exp (5*25.524/
19) = 826.204). This is the bottom-up color activation for menu option ‘‘professor’’.
The top-down color activation for menu option ‘‘professor’’ is calculated by

multiplying the top-down weight for color and the absolute difference in color
activations between menu option ‘‘professor’’ and the target, which is zero because the
target is menu option ‘‘professor’’.
Bottom-up length activation for menu option ‘‘professor’’ would be calculated in

the same way except that the differences in length are used in the calculation. The
result is exp (4 	 ð0=1þ 0=2þ 0=3þ 3=4þ 6=5þ 6=6þ 6=7þ 3=8þ � � �Þ=19Þ ¼ 5:122.
Top-down length activation for ‘‘professor’’ is zero because ‘‘professor’’ is the
target.
Adding the activations from all bottom-up components and subtracting all the top-

down components results in the total activation value for menu option ‘‘professor’’

Table 4
Screen layout of model menu designs

Model predicted fast Model predicted slow Designer predicted fast

Pred Freq Layout Color Pred Freq Layout Color Pred Freq Layout Color

175 4 professor Red 500 10 air Black 225 4 professor Blue
100 9 roadhouse Red 150 2 circle Red 250 9 map Black
200 4 butterfly Blue 175 3 log Black 200 10 beauty Red
125 10 submarine Blue 200 3 toy Red 250 10 air Red
225 3 minute Blue 125 2 rubber Red 150 10 submarine Red
100 9 map Blue 350 4 insect Gray 100 10 ground Red
100 10 air Gray 400 9 map Gray 100 9 roadhouse Blue
375 3 log Gray 75 2 war Red 175 4 insect Black
225 4 insect Black 325 3 ear Black 200 4 butterfly Black
425 2 war Gray 225 3 minute Blue 75 4 horseback Blue
175 3 toy Black 350 4 professor Black 325 3 bed Black
125 3 bed Gray 500 10 beauty Black 350 3 toy Black
75 10 ground Red 475 10 submarine Gray 375 3 ear Black
125 3 heaven Gray 300 4 butterfly Blue 400 3 log Black
100 10 beauty Black 450 9 roadhouse Black 400 3 heaven Black
400 2 rubber Gray 400 4 horseback Black 425 3 minute Black
350 2 circle Gray 100 2 tip Red 400 2 tip Gray
200 3 ear Blue 250 3 heaven Black 425 2 war Gray
425 2 tip Blue 250 3 bed Red 450 2 circle Gray
150 4 horseback Blue 550 10 ground Blue 500 2 rubber Gray
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(826:20420þ 5:12220 ¼ 831:326). This is the total activation value of menu option
‘‘professor’’ in the model predicted fast design when the target is ‘‘professor.’’
The pop-out levels of other menu options when searching target ‘‘professor’’ could be

calculated in similar way, but they would have non-zero subtractive top-down signals
for the feature that does not match the designated target. Among the pop-out levels
(measured by total activation) of all the menu options, ‘‘professor’’ ranks fifth. Thus,
the predicted search time for searching ‘‘professor’’ in the model predicted fast design is
175ð50þ 25 	 5Þ units time.
In the model predicted slow design, menu option ‘‘professor’’ is placed at the 11th

menu location, with black color. When searching for ‘‘professor,’’ the bottom-up
activation for color feature is exp (5 	 ð0=10þ 8:2=9þ 8:2=7þ 8:2=6þ 0:9=5þ
0:9=4þ 8:2=3þ 0=2þ 5=1þ 0=1þ 0:9=2þ 5=3þ 0=4 � � �Þ=19Þ ¼ 79:964. The bottom-
up activation for length feature is exp (4 	 ð6=10þ 3=9þ 6=8þ 6=7þ
3=6þ 3=5 � � �Þ=19Þ ¼ 62:631. The top-down activations in color and length for
‘‘professor’’ are zero because the target is ‘‘professor’’. The total activation for
‘‘professor’’ in the model predicted slow design when the target is ‘‘professor’’ is
62:631þ 79:964 ¼ 142:596. When this activation value is compared with the total
activations of other menu options in the design, it ranks 12th. So the predicted search
time for searching ‘‘professor’’ in model predicted slow design is 350 (50þ 12 	 25)
units time.
When these calculations are done for every menu option and the resulting pre-

dicted search time is weighted by the specific frequency of searching for that
menu option, we can produce an average search time. The predicted average
search time by the GS model is 148 units time in the predicted fast design and
393 units time in the predicted slow design. Figure 3 plots the predicted search time
with respect to different frequency groups. In the model predicted fast design,
predicted search time decreases with increased search frequency. This reflects the
task assigned to the optimization. The control of search time is done by the assign-
ment of color and location to the menu options. To minimize average search time,
the menu items searched for most frequently should have the shortest search
times. Depending on the frequency weights, it may be worthwhile to increase
the search time for less frequently searched for menu options if such a change allows
for a large enough decrease in search times for more frequently searched for menu
options.
These effects are also evident in the model predicted slow design. Here, the effect of

frequency is the opposite of that in the model predicted fast design: menu options are
given stimulus features so that higher frequency items have longer search times. Note
that the optimization task is fairly constrained. To get the longest predicted average
search time, the design set menu colors and locations so that high-frequency targets
take a long time to find. To achieve this, the system made low-frequency targets very
distinctive (e.g. elements in frequency group 2 have very short search times). This
arrangement makes the low-frequency menu items effective distracters when searching
for high-frequency menu items. In the model, the ‘‘observer’’ will always be distracted
by the low-frequency items and must disengage from them before finding the target.
Thus, the model predicts that the slow design is not necessarily slow for all menu
options, but that resources are allocated differently compared with the fast design.
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Indeed, the model predicts that menu options in frequency group 2 should be found
faster in the slow design than in the fast design.
When looking at the model predicted fast and model predicted slow menu designs, it

is difficult to pinpoint how the layout characteristics accelerate or hinder the overall
search process because the predicted search times are determined quantitatively by the
GS model. In general, in the GS model, items that have distinctive visual features (in
terms of both color and length in the search tasks) from nearby items should have
higher activations. Table 4 shows that some of the frequently searched items are placed
beside items that are visually distinctive from them in the model predicted fast design.
In the model predicted slow design, less frequently searched items are placed beside
items that are visually distinctive from them, which makes them effective distracters
when searching for high-frequency items.
However, we caution the reader against trying to take an intuitive approach for

understanding the basis of the designs. The description given is not always accurate. It
is fairly easy to find individual counterexamples in the predicted fast and slow designs.
This does not invalidate the optimization or the model, but instead indicates that the
menu search time measured by the model is a global property of the entire design. It is
likely that, when a high-frequency item is not notably distinctive from nearby items,
moving it to an alternative position or changing its color would lead to a worse overall
search time. Perhaps such a change would improve search for that item but would
increase search times for many other items. The overall search time cannot be
understood by looking at only the features of individual menu items or only the details
of search for a single item. Instead, the design must be based on the interacting effects
of the search process and the frequencies of searching for different items. It seems
nearly impossible for a designer to simultaneously consider all the possibilities. This is
our motivation for using the GS model and our optimization approach to handle these
interactions in a quantitative manner.

4. Experiment 1

In Experiment 1, model predicted fast and model predicted slow menu designs were
compared. The design layout in Table 4 illustrates the two menu designs used in the
experiment. In the actual experiment, menu options were presented on a vertical menu
with light gray background color, as shown in the screen snapshot of the model
predicted fast design in Figure 2. The model predicted fast design should minimize
expected visual search time, while the model predicted slow design should maximize
expected visual search time. If the GS model is valid in modeling important perceptual
aspects of a menu search task, then the model predicted fast design will help users locate
targets easily, whereas the model predicted slow design will hinder users from locating
targets easily. Failure to find such a difference will indicate one of two conclusions:
either the specific GS model we have defined is not capturing the important perceptual
aspects that determine visual search time in this display, or the perceptual aspects of the
display are not important in determining visual search time for this task. The latter is
possible because it could be that cognitive factors such as memory are more important
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than perceptual aspects of the display. Finding the predicted difference will indicate
that the model has captured some important issues in menu design.

4.1. METHOD

4.1.1. Participants. Twenty participants were recruited from students at Purdue
University. The mean age of the participants was 24.9, and the standard deviation of
age was 4.45. Seven of the participants were male, 13 were female. There were seven
undergraduate students, seven master students, and six doctoral students. They were
from 11 different countries and 11 different departments. All participants reported
having normal color vision.

4.1.2. Experimental task. Each participant went through 100 search trials in both menu
designs (model predicted fast and model predicted slow). The order of performing the
search trials in the two menu designs was randomized for the participants: 10
performed the search trials in the model predicted fast design first and the other 10
performed the search trials in the model predicted slow design first. In the 100 search
trials performed on each menu design, each of the 20 menu options was searched as a
target by the predefined frequency used to generate the model designs. The sequence of
target appearance was randomized in the two designs but was the same for all the
participants.

Figure 2. Sample screen for model predicted fast design.
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4.1.3. Dependent variables. Search time, error and satisfaction were measured as
dependent variables. Search time variables were measured in three ways: mean search
time for the 100 search trials in each design group, frequency-weighted search time of
the first trial for each menu option and frequency-weighted search time of the second
trial for each menu option. The first variable is useful for comparing the designs in a
straight-forward manner. However, search times for high-frequency items are likely to
be different from search times for low-frequency items both because of the design and
because of practice effects. Thus, the overall mean search time does not allow for a
comparison of frequency effects that are related only to differences in menu designs.
The latter two terms allow us to compare search times for labels with different search
frequencies without interference from practice effects. Because menu designs were
generated with the objective to minimize or maximize average search time, frequency-
weighted search time variables correspond to model predictions of average search time.
Satisfaction scores were also collected for each menu design by a satisfaction

questionnaire. They were calculated as the average of seven questions that were asked
about the arrangement of colors and locations of menu options in reducing average
search time, and participant’s general satisfaction toward task performance.
Error rates were counted as the number of errors made in the 100 search trials in each

design group.

4.1.4. Independent variable. The independent variable was type of menu design. Two
groups of menu design were compared: model predicted fast vs model predicted slow.
They were described in Section 3.2.

4.1.5. Experimental design. A within-subject experimental design was used. Each
participant used both menu designs. Half of the participants used the model predicted
fast design first and then the model predicted slow design, the other half of the
participants used the model predicted slow design first and then the model predicted
fast design. The experiment design was a three-factor crossover design. The three
factors were design, participant and order of using menu design. The corresponding
statistical model could be written as:

Yij ¼ Di þ Sj þ Okði ¼ 1; 2; j ¼ 1; 2 . . . 20; k ¼ 1; 2Þ;

Where Yij is the performance measurements, Di the menu design effect, Sj the subject
effect and Ok the order effect.

4.1.6. Procedure. An experimental session lasted about 50min. Each participant went
through a training session with 50 search trials first. The menu layouts in the search
trials were randomly generated with another set of words, but with similar physical
presentation as the experimental ones, that is, a vertical menu with the same number of
menu options, the same number of color options for each menu options and the same
menu background color. The purpose of the training was to let the participants become
familiar with the procedure of performing the search task, especially the search and
select paradigm. After the training, each participant performed two sets of search trials
in the designated order using the two designs. After performing 100 search trials in each
menu design, the participant filled out a satisfaction questionnaire.
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4.2. RESULTS

The predicted search times and the average search times of the first two trials, broken
down by design type and search frequency, are shown in Figure 3.

4.2.1. Difference of designs. If the GS model captures factors that matter to
performance in a menu search task, then search performance should be better in the
model predicted fast design than in the model predicted slow design. The overall mean
search time (F1;18 ¼ 3:04; p50:1) was suggestively shorter in model predicted fast
design (1.440 s) than in model predicted slow design (1.541 s). Frequency-weighted
search time variables for both the first (F1;18 ¼ 5:18; p50:05) and the second
(F1;18 ¼ 9:27; P50:01) trials were significantly shorter in model predicted fast design
(1.829 s for the first trial, 1.505 s for the second trial) than in model predicted slow
design (2.107 s for the first trial, 1.718 s for the second trial). Thus, the primary
experimental finding validates the model’s prediction that there is a difference in search
time between the designs.
No significant differences were present in satisfaction scores and errors between the

two designs, a finding that was replicated throughout our studies. This may reflect the
inadequacy of the questionnaire or may indicate that participants were unaware of
performance differences across the designs. Generally, the number of errors was small
because the search task is relatively simple, thus, less prone to errors.
The primary finding is that the model captures important components of the search

process, and that our optimization algorithm could utilize the model to build designs of
differing quality.

4.2.2. Frequency effects. The GS model also predicts differences in search times for
menu items of different search frequencies. There are two types of frequency effects:
within design and between design. The effect of frequency within each design on each of
the three search time variables (mean search time of overall trials, first trial, second
trial) generally matches the predicted pattern. A frequency effect is significant in the
model predicted fast design for all three search time variables (F4;75 ¼ 12:15;
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Figure 3. Plot of search times by frequency in Experiment 1. Experimental search times are based on the
average of the first two trials and are measured in seconds. Predicted search times are measured in time units
and are scaled so that the mean experimental search time was equivalent to mean predicted search time.
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p50:01;F4;75 ¼ 5:53; p50:01; F4;75 ¼ 4:57; p50:01). In the model predicted slow
design, there was also a significant frequency effect in the mean search time of overall
trials and first trial (F4;75 ¼ 2:62; p50:05; F4;75 ¼ 3:88; p50:01). Furthermore, Duncan
range tests showed that in the model predicted fast design, more frequently searched
items (frequency group 9) have shorter search times than less frequently searched items
(frequency group 2). In the model predicted slow design, less frequently searched items
(frequency group 2) have shorter search times than more frequently searched items
(frequency group 10). This pattern indicates that search times were related to the
predefined search frequency. Because the results hold before practice effects could
develop, the differences must be related to the menu design, as predicted by the model.
As predicted, the contrast of search time difference among different frequency groups in
the model predicted slow design is in the opposite direction from the contrast in the
model predicted fast design. The results were consistent with the GS model predictions
on the two designs.
The GS model predicts that there should be differences in search times for the

extreme search frequency groups. Significant design effects on all three search time
variables were found in frequency groups 2 and 9. In frequency group 9, mean search
time of overall trials (F1;18 ¼ 20:5; p50:01Þ, the first trial (F1;18 ¼ 22:88; p50:01), and
the second trial (F1;18 ¼ 5:36; p5 ¼ 0:05) were significantly longer in the model
predicted slow design than in the model predicted fast design. This finding reflects the
general effect of the designs, whereby searches are faster in the predicted fast design
than in the predicted slow design. However, the GS model also predicts that search
times for menu items in frequency group 2 should be faster in the predicted slow design
than in the predicted fast design. The data support this prediction. In frequency group
2, the mean search times of overall trial (F1;18 ¼ 24:68; p50:01), first trial
(F1;18 ¼ 44:45; p50:01), and second trial (F1;18 ¼ 11:03; p50:01) were significantly
shorter in the model predicted slow design than in the model predicted fast design.

4.2.3. Discussion. All of these results indicate that the GS model is capturing some
important characteristics for the first few trials that a user searches a menu. The
experimental data validate the model predictions that the model predicted fast design
should lead to faster searches than the model predicted slow design and that the relative
ordering of search efficiency within a design are related to search frequency. Moreover,
comparing search times across designs for the lowest frequency menu items validates
the model’s prediction that the predicted slow design is slow because observers must
disengage from a potent distracter that is itself rarely the target.

5. Experiment 2

Experiment 2 serves three functions. First, it considers whether the model is considering
factors that human designers also consider when they create menu designs. We had a
human designer create a menu design using the same stimuli and situations as the
model. We then used the GS model to interpret the design created by the designer. If the
design is interpreted in the GS model as having systematic trends related to the menu
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search task, this can be taken as evidence that the designer and the GS model are, in
part, optimizing similar display characteristics.
Second, the experiment considers the relative worth of the model’s optimized design

by directly comparing it with the design created by the human designer. This is an
important comparison because although Experiment 1 demonstrates differences in
model predicted fast and model predicted slow designs, it does not indicate whether
either of the designs is good in an absolute sense. To make such a comparison, a model-
based design must be compared with a standard design of high quality. The human
designer created such a standard design.
Third, if the design created by the human designer is superior to the model design, we

can look for differences between the designs. This will help identify factors that are
important in menu search but are not accounted for by the GS model. This is important
because it will help drive the development of better models and will identify situations
where the current approach is likely to be beneficial. Toward these ends, a human
designer was told to minimize the average search time based on the predefined search
frequencies of menu items. The menu items and associated search frequencies were the
same as in Experiment 1.
We had no a priori expectations as to whether the design created by the model or the

human designer would be superior. The model has the advantage of being able to
quantitatively consider a large number of possible designs. Given the combinations of
the design task and the complicated interactions of menu search, it seemed plausible
that the human designer would only consider a small subset of possible designs. From a
computational perspective, the model seemed to have an advantage. On the other hand,
the model is limited by its inability to exploit cognitive aspects of search strategy. A
human designer could possibly consider both the perceptual and cognitive factors in a
menu design. It seems plausible that, if the cognitive factors are more important than
the perceptual factors in the menu search task, the design created by the human
designer would be better. It is also possible that the design created by the human
designer would incorporate perceptual factors that the GS model does not consider.
These factors would seem to give the designer an advantage. Thus, taking all things into
consideration, it was unclear whether the model or the human designer would produce
a better design. The advantage to one or the other surely depends on the details of the
menu search task and the complexity of the menu.

5.1. METHOD

5.1.1. Participants. For Experiment 2, 20 different participants were recruited. The
mean age of the 10 participants in Experiment 2 was 26.8, with a standard deviation of
8.28. All participants reported normal color vision.

5.1.2. Experimental task. Each participant went through 100 search trials in both menu
designs (model predicted fast and designer predicted fast). The order of performing the
search trials in the two menu designs was randomized for the participants: 10
performed the search trials in the model predicted fast design first and the other 10
performed the search trials in the designer predicted fast design first. In the 100 search
trials performed on each menu design, each of the 20 menu options was searched as a
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target by the predefined frequency used to generate the model design. The sequence of
target appearance was randomized in the two designs but was the same for all the
participants.

5.1.3. Dependent variables. The dependent variables were search time, error and
satisfaction. The same search time variables were measured in the same way as in
Experiment 1: mean search time for the 100 search trials in each design group,
frequency-weighted search time of the first trial for each menu option, and frequency-
weighted search time of the second trial for each menu option. Satisfaction scores were
calculated from the satisfaction questionnaire for each design. Error rates were counted
as the number of errors made in the 100 search trials for each design group.

5.1.4. Independent variable. The independent variable was menu design. The human
designer was given the same design task as was given to the model for producing a fast
design. The human designer was a top Master’s student from the industrial design
department at Purdue University. He was not aware of the principles of the GS model
and was excited to challenge the model design when given the task. The design layout
for the human designer predicted fast design is presented in Table 4. The actual menu
being searched in the experiment was displayed as a vertical menu (background color
light gray) with the color and location layout as shown in Table 4. The comparative
designs in Experiment 2 were the model predicted fast design and the human designer
predicted fast design. The model predicted fast design was the same as the one used in
Experiment 1.

5.1.5. Experimental design. The experiment design for Experiment 2 was the same as
that for Experiment 1, that is, a three-factor within-subject design. The three factors
were design, participant and order of using the two designs.

5.1.6. Procedure. An experimental session lasted about 50min. Each participant went
through a training session with 50 search trials, and then performed the two sets of
search trials in the designated order, with 100 trials performed in the model predicted
fast design and 100 trials performed in the human designer predicted fast design. There
was a brief break after performing each test set, during which participants filled out the
satisfaction questionnaire.

5.2. RESULTS

5.2.1. Difference of designs. Our analysis starts with a model-based analysis of the two
designs. Figure 4 plots the predicted search times and experimental search times for
each frequency group for the two designs. The model predicts that for both designs,
those items with higher search frequency will have shorter search times. This is not
surprising for the model-based design because this pattern is entirely consistent with the
optimization that produced the design. However, there was no a priori reason that the
design created by the human designer would show the same tendency. If the human
designer were using design principles dramatically different from the model, then the
model predictions would likely show no systematic effect of search frequency. That the
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two designs have a similar pattern of model predicted search times suggests that the
human designer is, in part, assigning colors and locations to menu items in a manner
that taps into the same properties that the model was using. This correspondence
between the model design and the design created by the human designer suggests that
the model is attacking the design problem properly.
However, a comparison of the designs and their predicted search times also identifies

differences. The average frequency-weighted search time predicted by the GS model for
the model predicted fast design is 148 units time. The average frequency-weighted
search time predicted by the GS model for the designer predicted fast design is 247 units
time (they were rescaled in Figure 4). Thus, if only the model-based factors are
important, the model predicted fast design should be better than the human designer
predicted fast design.
By looking at the design created by the human designer, we can identify factors that

seem to promote certain search strategies. For example, more frequently searched items
were put in the upper part of the menu, and they were given a red or blue color. Thus,
the observer could adopt a strategy of generally focusing on the top of the menu or on
the red and blue colors and thereby reduce the effective number of distracters. Because
of the menu design, this would generally reduce search time (although it would increase
it for low-frequency targets). Strangely though, the design is not entirely consistent with
regard to this strategy (e.g. menu items ‘‘professor’’ and ‘‘horseback’’), so the human
designer may not have consciously planned for this particular search strategy.
Alternatively, the human designer may have implemented this strategy, but then
revised it when it resulted in a conflict with perceptual factors. Regardless of the human
designer’s reasoning, the final design seems to include a possible cognitive component.
Whether the inclusion of the cognitive component is used by observers and whether its
benefits offset what the model predicts would be a poorer use of perceptual components
is an empirical issue that is addressed next.
Contrary to the model’s predictions, the design created by the human designer

produced slightly faster search times than the model predicted fast design. The mean
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Figure 4. Plot of search times by frequency in Experiment 2. Experimental search times are based on the
average of the first two trials and are measured in seconds. Predicted search times are measured in time units
and are scaled so that the mean experimental search time was equivalent to mean predicted search time.
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search time for all trials was 1.559 s for the model design and 1.272 s for the design
created by the human designer (F1;18 ¼ 4:42; p50:1). The frequency-weighted search
time for the first trial (F1;18 ¼ 4:13; p50:1) was suggestively shorter in the design
created by the human designer (1.515 s) than in the model design (1.959 s). There was no
statistical difference in search times for the frequency-weighted search times in the
second trial between the design created by the human designer (1.326 s) and the model
design (1.611 s). There were also no significant differences in satisfaction scores and
error rates between the two designs.
Thus, there is evidence that the design created by the human designer is superior to

the model design, but the difference is not exceptionally large. We tentatively interpret
these results as indicating that the model produces menu designs that compare
favorably with the design created by the human designer.

5.2.2. Frequency effects. Unlike Experiment 1 in which the analysis of frequency effects
included both within-design and between-design comparisons, here we only consider
within-design frequency effects. This is because the model predicted search times in
Figure 4 do not suggest any particular between-design differences that are likely to be
statistically significant. For the model predicted fast design, the effect of frequency is
generally the same as for Experiment 1. The frequency effect on search time was
significant in the overall trials (F4;35 ¼ 4:29; p50:01) and the second trial
(F4;35 ¼ 2:60; p50:05) in the model predicted fast design. The frequency effect on
search time was also significant in the overall trials (F4;35 ¼ 3:61; p50:05) and the
second trial (F4;35 ¼ 2:49; p50:1) in the designer predicted fast design. Duncan multiple
range tests on the frequency effect suggest that the pattern of differences in search time
among frequency groups were similar in the model predicted fast design and the
designer predicted fast design. Both designs have shorter search times for items that
have higher search frequency (frequency 9, 10) than items of lower search frequency
(frequency 2, 3).

5.2.3. Discussion. The results of Experiment 2 suggest several important findings.
First, the common pattern of predicted search times with variation in search frequency,
as shown in Figure 4, suggests that the GS model and the human designer are utilizing
some common methods to manipulate search times. Second, the model design is good,
but not quite as good as the design created by the human designer. This indicates that
the GS model with the estimated parameters includes factors that are important for
menu use, but does not include some factors that also significantly contribute to menu
use. These additional factors could be perceptual factors that the model does not
include or they could be cognitive factors that are outside the domain of the GS model.
We now consider what the details of some of these factors could be. This analysis is
necessarily speculative, but we feel it is worthwhile to hypothesize if only it suggests
variations of our approach to menu design.
Menu search tasks are different from traditional visual search tasks in that the items

remain fixed across trials. In a traditional visual search task, the distracters change on
every trial and the target remains unchanged. The target and distracters also change
location across trials. As a result, an observer cannot rely on memory to guide the
search process. In a menu design, the target varies across trials, but the distracters
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remain fixed. All menu items remain in a fixed location across trials. Thus, an observer
can rely on memory to guide the search process. Thus, an observer may see the target
and not remember its exact location but remember that it was near the bottom of the
menu. Such knowledge could simplify the search process by effectively removing the
number of distracters, if the observer could ignore the top half of the menu. A designer
could take advantage of such memory-related strategies by designing the menu to
promote memory of item locations. This could include alphabetical arrangement of
menu items (which seems not to have been used in the current situation) or the
assignment of perceptual features (e.g. the design created by the human designer seems
to use color to group frequently used items). We cannot tell if the design created by the
human designer promotes memory formation because we have no direct experimental
measure of memory for menu item locations.
A designer might also take advantage of stereotyped behaviors among observers. For

example, people may follow a certain scanning order such as top to bottom. The GS
model does not consider such a tendency, but the human designer seemed to have taken
advantage of this tendency by placing the most frequently searched for items in
positions that are likely to be at the beginning of the scan. Using perceptual or cognitive
factors, a designer could also suggest a particular scanning pattern.
We did ask the human designer about the strategies he was using in creating the

predicted fast design. According to the designer, he basically used color grouping and
frequency grouping. That is, the most frequently searched items were put in the upper
part of the menu and were assigned the most salient color (red), less frequently searched
items were placed in the middle of the menu with color black and the least frequently
search items were located in the lower part of the menu with color gray. Color blue was
used to highlight menu options with the longest words. These menu options were placed
at the border of a different frequency group to create a pop-out effect. We are not clear
as to why the grouping principles were not consistently followed. But the human
designer did believe this would create a fast design that would beat the model’s design.
However, it would be interesting to contrast both of these designs with designs with
consistent assignment methods (ordering or perceptual grouping).

6. Conclusions and discussions

6.1. FINDINGS

We have taken a model of visual search from the perceptual psychology literature and
applied it to menu design. To do this we defined a GS model, gathered data to estimate
parameters of the model, used the model and an optimization routine to build menu
designs, and tested the menu designs. In Experiment 1, we experimentally measured
search times for menu designs that the model predicts should be extremes (fast and
slow) for a given set of menu items and search frequencies. The pattern of experimental
results matched the predicted pattern. In Experiment 2, we compared the model
predicted fast menu design to a corresponding menu design generated by a human
designer. The design created by the human designer was slightly better than the model-
based design. An analysis of the design created by the human designer suggests that it
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uses some of the same principles as the model-based design, but also includes additional
design principles.
This study is an explorative attempt to improve the graphic design of menu display. It

tested the adequacy of the GS model in a related HCI area. In conclusion, the GS
model was able to highlight the importance of visually discriminable designs. In
practice, it suggested that to create effective menu displays, we should not violate
perceptual rules but we should also not restrict ourselves to visual perception.

6.2. LIMITATIONS AND RECOMMENDATIONS

We realized that there are some inherent limitations of applying the GS model to menu
design. First, there is still a distance before the GS model can actually be used as a tool
for the designer to evaluate design alternatives or find optimal designs with respect to
visual perception. One of the reasons is that our model deals only with a single menu at
a time, more specifically, arrangement of colors and placement of menu options within
a vertical menu. Second, it does not address memory or search strategies. And third, the
requirement that users know the exact visual appearance of a target before the search
does not sound realistic either.
We also identify some ways that could possibly improve the performance of the

current model. As discussed in Section 3.1, shape characteristics were not included in
the current model. However, for top-down activation, a similarity score of two words
might be calculated by comparing letters at corresponding locations from a confusion
matrix (Van Der Heijen, Malhas & Van Den Roovaaart, 1984). The performance of the
model might be improved with some of the shape characteristics included. The current
model did not include certain scanning strategies, such as starting at the top and
moving down, because all users may not consistently follow it. Research shows people
use both random and systematic strategies in menu search (Hornof & Kieras, 1997).
However, certain scanning strategies could be incorporated into an elaboration of the
GS model. For example, if there is a general scanning order to menu search, then an
elaborated GS model could include location as a stimulus feature and assign parameters
to different locations. Such a model would need to be able to predict when the pop-out
effects from differences in features would overcome the default scanning strategies.
Although there are details to sort out, the creation of such a model seems possible. On
the other hand, the ability to predict memory effects seems more daunting. Current
models of memory are able to account for general statistical properties of memory but
are unable to predict recall or recognition in a particular situation. Such prediction
would be necessary for the model to be applied to menu design.
Because the GS model only deals with visual search, it is natural to think of applying

it in more visually based interaction, such as icon search. This involves building the
model with additional variables such as shape, size or orientation. This could allow the
GS model to be applied to search of icons or hardware panels. However, this is still
different from the approach of modeling the propositional representation of a target in
icon search (May, Tweedie & Barnard, 1993) because there is no assumption about the
user’s semantic knowledge of the target.
The basic approach we have used here can also become a tool to investigate the

importance of different variables. For example, we could use the GS model we defined
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here to assign colors to a menu design that has fixed the location of the menu items. We
could then study the benefit of color vs. black and white menu designs. By
systematically varying what is optimized and what is constrained in the design process,
it may be possible to identify the relative importance of different stimulus
characteristics.

We thank Haolong Ma for programming the experimental software.
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